Appendix 4A
Capital Cost Basis

Appendix 4A. Capital Costs

This appendix contains the details of the capital cost workbooks that were prepared by the CH2M Team.
American Association of Cost Engineering Institute (AACEI) Classification Cost 4 cost estimates were developed for this project. Per AACEI, Classification Cost 4 estimates represent the actual total installed cost within the range of -30 to +50 percent of the cost indicated (Figure 4A-1). The estimates have been prepared with due diligence with the available information under normal operations. However, project costs are subject to market demands and circumstances, including labor rates, material costs, actual site conditions, availability of labor, final project scope and schedule, and other mitigating factors; therefore, the actual project cost may differ from the presented cost estimate.

The cost estimates are based on California Department of Transportation historical costs (for concrete and import fill), MEANS (earthwork), CH2M (now Jacobs Engineering Group Inc.) historical values, Golder Associates historical values, and calculated values, where indicated. Cost estimates are largely based on 2016/2017 values because cost development commenced in 2017, prior to the Western Placer Waste Management Authority (WPWMA) Board meeting in December 2017, but were assumed to be applicable as the base for 2018 costs.

In addition to the bases listed above, it is assumed that there are no hazardous materials to remove and dispose, and that the work will be performed under a 40 -hour, normal workweek schedule; thus, acceleration costs have not been included. It is also assumed that all materials are readily available at no premium costs, and that the contractor has adequate laydown space and site facilities. Equipment specifications are not identified. Federal and state sales tax are expected to be included in unit rates. As the design is at conceptual stage, the tie-ins to existing equipment and facilities have not been fully identified.

Variations in design and permitting complexity are generally assumed to fall within the contingency and cost variation ranges at this time.

Costs in this appendix are presented in 2018 dollars. For present values of these costs, refer to the Present Value Analysis presented in Section 4 of the main report.

This appendix contains the capital cost basis. Design considerations and documentation are provided in Appendix 4A-1. Detailed initial capital cost estimates are provided in Appendix 4A-2. The timing and capital cost allocation for initial capital costs and replacements (in 2018 dollars) are shown in Appendix 4A-3.

Figure 4A-1. Cost Accuracy Table

4A. 1 Initial Capital Costs

Initial capital costs refer to the capital costs associated with initial construction and installation of the cost component. This section presents the design considerations for each cost component for comparison purposes only. The design considerations presented in this section include assumptions that were deemed appropriate for economic analysis and overall high-level comparison of alternatives. Specific assumptions may be modified at a later date as more accurate information is available; thus, costs and assumptions in this report should be viewed as estimates for comparison purposes. Supporting design calculations, sketches, and other documentation are provided in Appendix 4A-1. Detailed initial capital cost estimates are provided in Appendix 4A-2. Timing and replacement capital costs are provided in Appendix 4A-3.

A summary of the initial capital costs for each Plan Concept is provided in Table 4A-1. These capital costs are further utilized in the Present Value Analysis presented in Section 4.

Table 4A-1. Summary of Initial Capital Costs

Element	Plan Concept 0	Plan Concept 1	Plan Concept 2
Critical Elements			
Public Area C\&D Area Compost Area Landfill Construction Landfill Stockpile Relocation Landfill Closure Unlined Area Waste Relocation	\$17,008,099 \$18,098,690 \$44,239,962 \$54,214,085 \$40,091,688 \$43,215,610 \$102,344,916	\$17,008,099 \$13,414,225 \$44,275,759 \$192,719,350 \$13,363,896 \$79,285,170 \$81,462,874	\$17,008,099 \$18,098,690 \$44,239,962 \$254,936,766 \$26,727,792 \$106,499,440 \$102,344,916
Necessary Supporting Elements			
Administrative Building Main Entrance Western Entrance Overpass Recovered Materials Storage Primary Maintenance Facility Satellite Maintenance Facility New Stormwater Ponds	$\$ 6,384,999$ $\$ 2,351,346$ N/A N/A $\$ 8,281,730$ $\$ 1,842,538$ N/A $\$ 1,254,153$	$\begin{aligned} & \$ 15,666,111 \\ & \$ 1,969,520 \\ & \$ 4,851,349 \\ & \$ 9,278,433 \\ & \$ 8,174,342 \\ & \$ 1,842,538 \\ & \$ 3,311,687 \\ & \$ 3,058,040 \end{aligned}$	$\begin{aligned} & \$ 15,666,111 \\ & \$ 2,351,346 \\ & \$ 1,135,231 \\ & \$ 9,278,433 \\ & \$ 8,281,730 \\ & \$ 1,842,538 \\ & \$ 2,394,397 \\ & \$ 4,478,684 \end{aligned}$
Noncritical Elements			
Main Site HHW Facility	N/A	\$236,971	N/A
Existing Features to be Removed			
Compost Pond Removal	\$217,629	\$217,629	\$217,629
General Elements			
Special Permits and Allowances Wetlands Mitigation Site Beautification Site-wide Demolition and Disposal Site Utilities MRF Upgrade	$\begin{gathered} \$ 4,483,996 \\ \$ 987,453 \\ \$ 889,230 \\ \$ 2,866,952 \\ \$ 3,061,096 \\ \$ 415,766 \end{gathered}$	$\begin{gathered} \hline \$ 8,461,963 \\ \$ 12,878,109 \\ \$ 2,697,547 \\ \$ 2,866,952 \\ \$ 3,776,446 \\ \$ 415,766 \end{gathered}$	$\begin{gathered} \$ 7,153,364 \\ \$ 8,222,370 \\ \$ 3,143,189 \\ \$ 2,866,952 \\ \$ 3,061,096 \\ \$ 415,766 \end{gathered}$
Total Probable Initial Capital Cost	\$352,250,000	\$521,233,000	\$640,365,000
Class 4 - Low Range (-30\%)	\$246,575,000	\$364,864,000	\$448,256,000
Class 4 - High Range (+50\%)	\$528,375,000	\$781,850,000	\$960,548,000

Notes:
Costs shown in this table are presented in 2018 dollars. For present values, refer to the Present Value Analysis in Section 4. C\&D = construction and demolition; HHW = hazardous household waste; MRF = material recovery facility; N/A = not applicable

The assumptions used in this estimate for capital and operating costs are appropriate to compare the Plan Concepts. As this project progresses, design considerations and assumptions may be refined to reflect the actual timing and needs of the WPWMA. Through review of this report, a number of future considerations were highlighted, as summarized in Table 4A-2.

Table 4A-2. Potential Future Design Considerations

Cost Component	Potential Future Design Considerations
C\&D Area	- Evaluate sizing based on finetuned future quantities and additional planned flow of C\&D debris through facility
Composting Area	- Finetune loading area space and operations - Evaluate facility operations, needs, and construction requirements based on future regulations
Composting Area Stormwater Pond New Stormwater Ponds	- Finetune design if zero discharge is required - Evaluate size needed to meet discharge requirements (currently, it is difficult to meet total suspended solids, iron, and aluminum requirements)
Unlined Waste Area Excavation	- Evaluate phasing of excavation for stormwater control, including intermediate backfill of excavation prior to landfill module construction, if necessary
Main Entrance Western Entrance	- Evaluate the need for multiple entrances while considering resources, traffic flow, and safety
Primary Maintenance Facility Satellite Maintenance Facility	- Evaluate specific maintenance needs to determine adequate space, facilities, and equipment of new or upgraded maintenance facilities
Main Site HHW Facility	- Evaluate sizing needed to accommodate HHW quantities and traffic flow - Determine facility configuration (enclosed, exterior canopy) to meet functional needs
Site Utilities	- Confirm need and sizing for different utilities such as sewer and water - Determine specific routing of utility lines to meet needs of facility

4A.1.1 Public Area

The New Public Area capital cost component includes entrance kiosk/vehicle queuing lanes, public waste tipping area (100-foot by 325 -foot building, 220 -foot by 600 -foot pad), buy-back center (220 -feet by 230 feet), HHW drop-off area for the public (300 feet by 100 feet), and a reuse store. To minimize impacts of internal transfers during site operations, the public tipping area includes space to store daily quantities of C\&D debris, municipal solid waste (MSW), wood waste, appliances, tires, and recyclables. The new public unloading area will be a flat pad instead of the current Z-wall configuration for operational safety and flexibility. It is assumed that standard 40-cubic-yard open-top roll-off bins would be utilized and that 24 bins would be needed (including redundancy).

Space allocation is based on projected traffic during design year 2042 and the largest footprint for operational variances. Design year traffic is based on 2017 average weekend and peak day traffic data provided by WPWMA on August 23, 2017, increased by 35 percent (based on the projected population increase from 2017 to 2042 in "growth projections v12.xlsx" provided by Golder Associates). A summary of design considerations for the Public Area is as follows:

- 2017 Peak Daily Traffic: 824 vehicles per day at public tipping area; 402 vehicles per day at buy-back area and HHW drop-off
- 2042 Peak Daily Traffic (35 percent increase): 1,115 vehicles per day at public tipping area; 544 vehicles per day at buy-back area and HHW drop-off
- Peak hourly traffic is assumed as 125 percent of the average hourly traffic for a 10-hour day
- 2042 Peak Hourly Traffic: 141 vehicles per hour

The existing Public Area is assumed to be razed and all New Public Area components, including pads, to be constructed.

Detailed design considerations and supporting design documentation is provided in Appendix 4A-1.

4A.1.1.1 Differences between Plan Concepts

The Public Area design considerations and initial capital costs are assumed to be the same across all Plan Concepts.

Detailed initial capital cost estimates are provided in Appendix 4A-2.

4A.1.2 C\&D Area

The CH2M Team completed an initial assessment of the capacity and size limitations of the current C\&D processing area as part of a site visit in June 2017 and subsequent conversations with WPWMA staff and the operator. There were two main findings from this site visit and the conversations:

- The existing C\&D processing line is not sufficient both in throughput and condition to process current levels of $C \& D$ nor estimated future $C \& D$ quantities. A new processing line will be needed.
- The existing space for C\&D processing, materials staging and storage, and materials drop-off are insufficient and potentially unsafe as a result.

The CH2M Team approximated the amount of space needed based on industry standards, equipment space needs, anticipated building space needs, and drop-off and material movement needs. This estimate was conceptual, and assumes that the C\&D operational footprint will need to be increased to 2 to 3 times its existing size to accommodate the projected C\&D waste stream in design year 2042 (85,755 tons of C\&D debris per "growth projections v12.xlsx" provided by Golder Associates). ${ }^{1}$ The New C\&D Area will include a new processing line capable of handling 40 to 50 tons per hour as well as an open-air roof structure to shield the processing line from weather elements.

Supporting design documentation is provided in Appendix 4A-1.

4A.1.2.1 Differences between Plan Concepts

In terms of initial capital costs, Plan Concept 1 pad costs are lower than Plan Concepts 0 or 2 because of the assumption that a portion of the existing paved site area will be used as it exists and not as much new pad area will need to be constructed. Plan Concepts 0 and 2 assume construction of a completely new pad.

In terms of construction phasing, implementing Plan Concepts 0 and 2 requires coordination with completion of the unlined area waste relocation as well as composting operations relocation. The unlined waste area must be excavated and backfilled prior to construction of the New C\&D Area. New composting and existing C\&D operations must be phased in such a way to share pad space while the existing C\&D operation is transitioned to the New C\&D Area.

Detailed initial capital cost estimates are provided in Appendix 4A-2.

4A.1.3 Composting Area

The new Composting Area capital cost component includes a temporary positive aerated static pile (ASP) system for the near term and, ultimately, an active composting system using four negative ASPs (205 feet by 880 feet), four biofilters (135 feet by 880 feet), a negative ASP curing system using four ASPs (185 feet by 880 feet), green waste area (210 feet by 225 feet), wood waste area (115 feet by 225 feet),

[^0]outdoor food waste receiving area (90 feet by 200 feet), screening and product storage area (400 feet by 350 feet), and a dedicated stormwater pond. ${ }^{2}$ The composting area design follows Compost Option 4 of the varying composting configurations developed during the course of the project. Composting configurations that were evaluated are as follows, with Compost Option 4 selected for inclusion in the cost estimate:

- Compost Option 1: Windrows with no primary screening
- Compost Option 2: Windrows with primary screening and separate curing windrows
- Compost Option 3: ASPs with primary screening and windrow curing
- Compost Option 4: ASPs with primary screening and ASP curing

Space has been included for an enclosed receiving building if one should be planned in the future to mitigate odors; however, an enclosed building is not included in the capital costs as a part of the master plan.

A summary of design considerations for the composting area is as follows:

- 2042 Total Organics to Compost: 99,788 tons per year
- 2042 Green Waste to Green Waste Receiving Area: 7,200 tons per year, 171 tons per week peak, and 138 tons per week average
- 2042 Green Waste/Food Waste: 99,789 tons per year, 2,166 tons per week peak, and 1,919 tons per week average
- Receiving piles in the green waste and wood waste receiving areas are approximately 75 feet wide (allows for five customers to unload simultaneously) and a maximum of 12 feet high.
- Active composting is accomplished by a negative ASP system with an active composting duration of 4 weeks; biofilters will treat the process air collected by the negative ASP system.
- Additional compost curing is accomplished by a positive ASP system with a minimum curing duration of 4 weeks.
- Dedicated stormwater pond is sized for a 100-year, 24-hour intensity precipitation event. ${ }^{3}$

Detailed design considerations and supporting design documentation are provided in Appendix 4A-1.

4A.1.3.1 Differences between Plan Concepts

In terms of initial capital costs, the only differences in cost components are in anticipated utility connection costs within the three Plan Concepts.

Detailed initial capital cost estimates are provided in Appendix 4A-2.

4A.1.4 Landfill Construction

Golder Associates prepared estimates for landfill construction for different portions of the new landfill. These estimates were summed together to determine the applicable landfill construction costs for each Plan Concept in "WRSL Cost Estimate - REV1-120717_101018_rdh_jem.xlsx." Landfill construction includes design and permitting, clearing and grubbing, excavation, earthfill, liner, leachate collection systems, groundwater and landfill gas monitoring systems, and stormwater controls.

Supporting design documentation is provided in Appendix 4A-1.

[^1]
4A.1.4.1 Differences between Plan Concepts

Each Plan Concept has differing capital costs depending on the landfill to be constructed. Additionally, Plan Concept 1 has a higher level of complexity to manage leachate because the leachate piping/sump configuration and groundwater depth may impact airspace and module capacity. Presumably, whatever capacity is lost can be added by going to a higher fill height. The complexity associated with leachate management in Plan Concept 1 is expected to be covered by the applied contingency factor. Plan Concept 2 has differing capital costs due to the need for duplicate infrastructure for some components since the landfill will be divided on two non-contiguous properties.

Detailed initial capital cost estimates are provided in Appendix 4A-2.

4A.1.5 Landfill Stockpile Relocation

According to WPWMA staff, approximately 1.4 million cubic yards of soil is currently stockpiled on top of unconstructed landfill modules. To construct the landfill modules, the stockpile must be moved elsewhere onsite.

Supporting design documentation is provided in Appendix 4A-1.

4A.1.5.1 Differences between Plan Concepts

Because there is limited onsite space in Plan Concept 0, it is assumed that the soil stockpile may need to be relocated a total of three times to allow for remaining landfill module construction. Similarly, because of availability of space, it is assumed that the stockpile will be relocated once in Plan Concept 1 and twice in Plan Concept 2.

Detailed initial capital cost estimates are provided in Appendix 4A-2.

4A.1.6 Landfill Closure

Golder Associates prepared estimates for landfill closure for different portions of the new landfill. These estimates were summed together to determine the applicable landfill closure costs for each Plan Concept in "WRSL Cost Estimate - REV1-120717_101018_rdh_jem.xlsx." Closure costs include mobilization/demobilization, cap, revegetation, drainage, and stormwater controls.

Supporting design documentation is provided in Appendix 4A-1.

4A.1.6.1 Differences between Plan Concepts

Each Plan Concept has differing capital costs depending on the total acreage of landfill to be closed.
Detailed initial capital cost estimates are provided in Appendix 4A-2.

4A.1.7 Unlined Area Waste Relocation

Landfill modules $1,2,10,11$, and 12 are older landfill areas, constructed prior to requirements for a composite liner system. They were lined with compacted soil and met the regulations at the time they were developed. These modules have been referred to as the "unlined area" or "unlined modules." The waste in the unlined area located on the existing main site must be excavated and relocated to allow for construction of Plan Concept elements.

To determine the unit cost for waste excavation and relocation, the CH2M Team considered several resources:

- The $\mathrm{CH} 2 \mathrm{M} / \mathrm{Jacobs}$ construction database with unit cost bids for similar projects
- Recent unit costs for similar projects completed
- The Golder Associates document, "Pre-Subtitle D Area Waste Relocation Workplan"4

It is possible that the waste excavation may include mining and placement of suitably screened material; however, for the purposes of the cost estimates, it has been assumed that the entire amount of excavated material will be relocated to lined modules and clean earthfill will be utilized as backfill following excavation, when applicable to the Plan Concept.

Supporting design documentation is provided in Appendix 4A-1.

4A.1.7.1 Differences between Plan Concepts

The same unlined area (Modules 1, 2, 10, 11, and 12) will be excavated in all Plan Concepts. The difference in costs between Plan Concept 1 and the other two Plan Concepts is attributable to the assumption that Plan Concept 1 does not include backfill of the excavation ${ }^{5}$ (the unlined area will be repurposed for new landfill construction). Plan Concepts 0 and 2 include backfill of the unlined area to allow for construction of new site elements, such as the C\&D Area.

Detailed initial capital cost estimates are provided in Appendix 4A-2.

4A.1.8 Administrative Building

The administrative building cost assumes a standalone building with associated parking lot. This building is necessary to accommodate more staff offices as well as staff and event parking. Additionally, the building may also include space for a public education center.

4A.1.8.1 Differences between Plan Concepts

Because there is limited onsite space in Plan Concept 0, a 5,000 -square-foot building with no education center and a 10,000-square-foot parking lot is anticipated. In Plan Concepts 1 and 2, the administrative building may encompass 12,400 square feet (including 2,400 square feet for an education center) and 25,000 square feet of parking lot.

Detailed initial capital cost estimates are provided in Appendix 4A-2.

4A.1.9 Main Entrance

Main entrance improvements are anticipated to accommodate additional traffic and/or to improve traffic flow. Improvements include new roadways, new scale building, and three scales (two inbound scales and one outbound scale) ${ }^{6}$.

Supporting design documentation is provided in Appendix 4A-1.

4A.1.9.1 Differences between Plan Concepts

Because the majority of public traffic will be redirected to the western property, no initial retrofit is needed in Plan Concept 1. For Plan Concepts 0 and 2, an initial retrofit of the main entrance scales and signage is anticipated in order to appropriately direct traffic as master plan construction commences.

Detailed initial capital cost estimates are provided in Appendix 4A-2.

[^2]
4A.1.10 Western Entrance

A new entrance to the western property is planned near the intersection of Athens Avenue and Fiddyment Road. ${ }^{7}$ This new entrance would accommodate traffic entering the western property and would alleviate traffic congestion on the main site.

Supporting design documentation is provided in Appendix 4A-1.

4A.1.10.1 Differences between Plan Concepts

Because Plan Concept 0 only utilizes space on the existing main site, no western entrance is required. For Plan Concept 1, the western entrance will accommodate the majority of public traffic as the New Public Area and New Composting Area are located on the western property. The western entrance in Plan Concept 1 includes a scale building and two new scales (one inbound scale and one outbound scale). For Plan Concept 2, the western entrance will accommodate commercial traffic (no public) accessing the landfill on the western property; therefore, the entrance will only include one unstaffed automated scale and no scale building.

Detailed initial capital cost estimates are provided in Appendix 4A-2.

4A.1.11 Overpass

The purpose of the overpass is to allow for WPWMA and operator staff to easily traverse Fiddyment Road to access the western property. A number of crossing alternatives were evaluated, including under crossings with and without retaining walls and overcrossings with and without retaining walls. Ultimately, an overpass with retaining walls was selected to be costed. The overpass includes two 12 -foot lanes of traffic with 4-foot shoulders, and assumes a 25 mile-per-hour design speed and 16 feet 6 inches of vertical clearance. Although a conveyor system could potentially be implemented (especially for Plan Concept 2) to move materials across Fiddyment Road instead of an overpass, this level of detail is not relevant at this time, and for consistency, an overpass was included for Plan Concepts 1 and 2.

Supporting design documentation is provided in Appendix 4A-1.

4A.1.11.1 Differences between Plan Concepts

Because Plan Concept 0 only utilizes space on the existing main site, no overpass is required. The overpasses for Plan Concepts 1 and 2 are expected to be the same.

Detailed initial capital cost estimates are provided in Appendix 4A-2.

4A.1.12 Recovered Materials Storage

The recovered materials storage is envisioned to be a 175 -foot by 400 -foot enclosed storage building.

4A.1.12.1 Differences between Plan Concepts

In terms of initial capital costs, the only differences lay in anticipated utility connection costs within the three Plan Concepts.

Detailed initial capital cost estimates are provided in Appendix 4A-2.

[^3]
4A.1.13 Primary Maintenance Facility

An upgrade to the existing maintenance facility by the MRF is needed. The primary maintenance facility upgrade includes a 75 -foot by 160 -foot, four-bay building with additional pad space. ${ }^{8}$

4A.1.13.1 Differences between Plan Concepts

The primary maintenance facility is the same in all Plan Concepts.
Detailed initial capital cost estimates are provided in Appendix 4A-2.

4A.1.14 Satellite Maintenance Facility

A satellite maintenance facility is anticipated to be needed on the western property to provide support for operations across Fiddyment Road. The facility includes a 65 -foot by 125 -foot, three-bay building with space for administrative offices and parking.

4A.1.14.1 Differences between Plan Concepts

Because Plan Concept 0 only utilizes space on the existing main site, no satellite maintenance facility is needed. For Plan Concept 1, a satellite maintenance facility with administrative office space and parking is envisioned to support New Public Area and Compost Area operations. For Plan Concept 2, a satellite maintenance facility without administrative office space and parking is planned to support landfill operations on the western property.

Detailed initial capital cost estimates are provided in Appendix 4A-2.

4A.1.15 New Stormwater Ponds

Additional stormwater ponds are needed to adequately contain precipitation. Stormwater ponds were estimated for the New Public Area, New C\&D Area, and landfill. The stormwater pond for the New Composting Area is included with the Compost Area cost estimate. The New Public Area and New C\&D Area ponds were sized based on a 100-year, 24-hour intensity precipitation event, and the landfill stormwater ponds were sized for a 1,000-year, 24 -hour intensity precipitation event, consistent with Class II landfill requirements. ${ }^{9}$

Supporting design documentation is provided in Appendix 4A-1.

4A.1.15.1 Differences between Plan Concepts

Because Plan Concepts include different sizing for various elements, stormwater pond costs differ between each Plan Concept as reflected in the cost estimates.

Detailed initial capital cost estimates are provided in Appendix 4A-2.

4A.1.16 Main Site HHW Facility

This element only includes the facility where HHW is repacked/bulked and temporarily stored prior to being removed from site. The New Public Area includes a separate HHW drop-off facility for public customers. The HHW hauler will service both this HHW facility and the HHW drop-off included in the New Public Area.

[^4]The building is approximately 65 feet by 75 feet, and it will be completely enclosed and upgraded with explosion-proof lighting and electrical as necessary. ${ }^{10}$

4A.1.16.1 Differences between Plan Concepts

Plan Concept 1 is the only alternative where the main site HHW facility is needed because the New Public Area is located on the western property. Plan Concepts 0 and 2 do not include a cost for this main site HHW facility.

Detailed initial capital cost estimates are provided in Appendix 4A-2.

4A.1.17 Compost Pond Removal

A compost pond in the northern part of the main site, east of the MRF, will be removed. This compost pond is approximately 53,200 square feet in area, resulting in excavation of approximately 4,000 cubic yards and 10,000 cubic yards of earthfill.

Supporting design documentation is provided in Appendix 4A-1.

4A.1.17.1 Differences between Plan Concepts

Compost pond removal costs are the same in all Plan Concepts.
Detailed initial capital cost estimates are provided in Appendix 4A-2.

4A.1.18 Special Permits and Allowances

Special permits and allowances include solid waste facility permitting for the new compost facility, environmental / land use / local permitting, and allowances for geotechnical investigations. Other general permitting is included in costs for each capital element.

Solid waste permitting for the new compost facility is assumed to be 10 percent of the total capital cost for the new compost facility. Solid waste permitting for the landfill is assumed to already be included within the Landfill cost element.

Environmental / land use / local permitting is dependent upon the location of disturbed wetlands and vernal pools and the extent of high-value wetland/vernal pools. For development on the eastern property, the permitting cost is assumed to be 2 percent of the total landfill construction cost (because of the highvalue wetland and vernal pools). For development on the western property, the permitting cost is assumed to be 1 percent of the total landfill construction cost (simplified by assuming that only the landfill will be displacing wetlands).

Allowances for geotechnical investigations assumes that two geotechnical investigations each may be performed on the main site, western property, and eastern property.

Supporting design documentation is provided in Appendix 4A-1.

4A.1.18.1 Differences between Plan Concepts

Because Plan Concept 0 only utilizes space on the existing main site, the only special permit and allowance costs included are for solid waste facility permitting for the new compost facility and two geotechnical investigations. Plan Concepts 1 and 2 include costs for solid waste facility permitting, environmental / land use / local permitting, and six geotechnical investigations.

Detailed initial capital cost estimates are provided in Appendix 4A-2.

[^5]
4A.1.19 Wetlands Mitigation

Wetlands mitigation costs were calculated using data gathered during the Aquatic Resources Delineation effort (Appendix 2C). After delineation of the wetland areas on WPWMA property, the areas laying within the boundaries of critical and necessary supporting elements were summed into three categories: vernal pools; irrigated wetlands, except agricultural ponds; and irrigated wetlands, agricultural ponds only.

Based on direction from a Jacobs biologist, the resulting mitigation area to purchase schedule is as follows:

- Vernal pools, replaced at a value of 3 acres per every acre "taken" (3:1)
- Irrigated wetlands, except agricultural ponds, replaced at a value of 2 acres per every acre "taken" (2:1)
- Irrigated wetlands, agricultural ponds only, replaced at a value of 1 acre per every acre "taken" (1:1)

Supporting design documentation is provided in Appendix 4A-1.

4A.1.19.1 Differences between Plan Concepts

Differences in costs are attributable to the configuration of elements within each Plan Concept.
Detailed initial capital cost estimates are provided in Appendix 4A-2.

4A.1.20 Site Beautification

Based on review of the Sunset Area Plan ${ }^{11}$ and the Placer Ranch Specific Plan Development Standards, ${ }^{12}$ site beautification standards were developed for the purposes of this cost estimate. Site beautification includes landscaping/vegetation and irrigation at the New Administrative Building, Main Entrance, and site perimeter as well as fencing along the perimeter of the site. Google Earth was used to estimate the quantities of vegetation, irrigation, and fencing.

Supporting design documentation is provided in Appendix 4A-1.

4A.1.20.1 Differences between Plan Concepts

Each Plan Concept includes varying quantities of site beautification. Each Plan Concept includes 1,000 and 500 square feet of landscaping/vegetation for the new administrative building and main entrance, respectively. All Plan Concepts include varying lengths of irrigation, perimeter vegetation, and fencing depending on the configuration of the facility.

Detailed initial capital cost estimates are provided in Appendix 4A-2.

4A.1.21 Site-wide Demolition and Disposal

Preliminary demolition and disposal of existing structures was estimated for each of the Plan Concepts. This includes demolition of the existing Public Area pad and structures as well as a portion of the existing C\&D Area pad.

Supporting design documentation is provided in Appendix 4A-1.

[^6]
4A.1.21.1 Differences between Plan Concepts

There are no differences in initial capital costs between the three Plan Concepts.
Detailed initial capital cost estimates are provided in Appendix 4A-2.

4A.1.22 Site Utilities

Major site utility work includes installation of a sewer line and fire water line running from the intersection of Sunset Boulevard and Fiddyment Road, north along Fiddyment Road, until the intersection of Fiddyment Road and Athens Avenue. This distance is approximately 5,300 linear feet. ${ }^{13}$ Sewer and fire water is deemed necessary for activities located on the western property.

Supporting design documentation is provided in Appendix 4A-1.

4A.1.22.1 Differences between Plan Concepts

Sewer line installation is the same across all Plan Concepts. Plan Concept 1 is the only alternative that includes installation of a fire water line, because of activity from the New Public Area and New Composting Area located on the western property.

Detailed initial capital cost estimates are provided in Appendix 4A-2.

4A.1.23 MRF Upgrade for Long-Haul

An upgrade to the existing MRF is considered necessary to support long-haul offsite disposal activities after the landfill reaches capacity. The MRF upgrade includes installation of two 100-foot-long scales with direct readout that would be integral to the waste loading area to enable transfer capability.

4A.1.23.1 Differences between Plan Concepts

There are no differences in initial capital costs between the three Plan Concepts.
Detailed initial capital cost estimates are provided in Appendix 4A-2.

4A. 2 Replacement Capital Costs

After initial build, the many components of the constructed area have differing useful lives. These components should be replaced at regular intervals to optimize the functionality of the site. Table 4A-3 presents the suggested replacement intervals based on discussions with WPWMA staff, the site operator, and the Jacobs estimator. The timing and capital cost allocation for replacements (in 2018 dollars) are shown in Appendix 4A-3. Capital costs incurred for replacements are included in the Present Value Analysis in Section 4 of the main report.

[^7]Table 4A-3. Replacement Frequency for Capital Cost Items

Replacement Item	Useful Life	Unit	Notes
Onsite Roads and Parking lots	25	years	National Asphalt pavement association: http://www.asphaltpavement.org/index.php?option=com conte nt\&view=article\&id=14\&\|temid=33 (confirmed by Jacobs estimator).
Scales	20	years	30 years per Jacobs estimator (Greg Mah-Hing), 10/18/2018. However, based on WPWMA site experience, changed to 20 years.
Buildings	50	years	Per Jacobs estimator (Greg Mah-Hing), 10/18/2018.
Stormwater ponds (liners)	30	years	Per Jacobs estimator (Greg Mah-Hing), 10/18/2018.
Concrete pads (including ASP, public drop-off area)	20	years	Per Jacobs estimator, 25 years; however, based on current site pad wear/conditions and nature of compost and MSW operations, reduced from high end of estimator. WPWMA also concurs with 20 years, based on site experience.
Mechanical (ASP blowers, landfill gas, and leachate system components)	10	years	Range of 7 to 20 years from operator and Jacobs estimator, used 10.
Processing equipment (green waste, wood waste, C\&D line)	10	years	Range of 7 to 20 years from operator and Jacobs estimator, used 10.
Landscaping	15	years	Per Jacobs estimator (Greg Mah-Hing), 10/18/2018.
Fencing	40	years	Up to 50 years per Jacobs estimator (Greg Mah-Hing), 10/18/2018; however, based on WPWMA site experience, reduced to 40 .
Onsite utilities lines and connections	30	years	General estimate, highly variable by site.
Offsite sewer extension	N/A		Assumed deeded over to sewer district.

Appendix 4A-1

Design Documentation

Appendix 4A-1
Design Documentation
Tonnage Growth Projections

Note - Where conversion from cubic yards to tons was necessary (e.g. for determining "Total Accepted Tons"), the following conversion factors were used: MSW yards/ $8=$ MSW Tons; C\&D Yards/ $6=$ C\&DD Tons; Green Waste Yards/ $8=$ Green Waste Tons; Wood Waste Yards/ $6=$ Wood Waste Tons; Inert Yards/ $/ 2=$ Inert Tons.

http://www.dof.ca.gov/Forecasting/D
emorraphics/Estimates/E-4/1991-
Historical City, County, and State
Population Estimates, 1991-2000,
with 1990 and 2000 Census Counts

Indicator \% change	1997	1998	1999	2,000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016
Population (Dept of finance)	3.38\%	3.33\%	3.75\%	4.24\%	3.98\%	4.86\%	4.75\%	4.59\%	3.71\%	3.16\%	2.69\%	2.40\%	2.15\%	2.71\%	1.74\%	1.13\%	1.33\%	1.19\%	1.09\%	1.11\%
Total Employment-thousands					7.11\%	1.13\%	7.66\%	3.72\%	1.96\%	2.11\%	0.23\%	-2.36\%	-7.66\%	-0.13\%	0.86\%	4.09\%	5.44\%	2.77\%	3.91\%	3.91\%
New Homes Permitted					-6.35\%	20.32\%	-26.91\%	-6.85\%	8.17\%	-39.46\%	-24.71\%	-29.01\%	-23.23\%	-11.10\%	-29.08\%	59.23\%	11.82\%	34.89\%	2.89\%	17.09\%
taxable Retail Sales - thousands		10.52\%	19.70\%	23.98\%	12.08\%	9.70\%	9.09\%	10.68\%	10.25\%	3.10\%	-2.76\%	-9.79\%	-11.11\%	4.51\%	9.05\%	8.64\%	7.32\%	4.80\%	7.97	

WPWMA Waste Stream Projectio

	Projections																			
Material Type Accepted	2017	2018	2019	2020	2021	2022	2023	2024	2025	2030	2035	2040	2041	2042	2043	2044	2045	2050	2055	2060
Municipal Solid Waste MSW tons	227,745	231,959	245,525	248,884	251,773	254,581	257,440	260,685	263,564	278,869	295,961	312,582	315,520	318,434	321,329	324,204	327,068	341,299	355,217	369,589
msw yards	80,408	81,896	83,34	84,484	85,465	86,418	87,889	88,490	89,468	94,663	100,465	106,107	107,104	108,093	109,076	110,052	111,024	115,855	120,579	125,458
Construction/Demolition	63,743	66,108	66,985	66,916	67,105	67,21	67,627	68,666	69,593	74,056	79,389	83,899	84,822	85,755	86,698	87,652	88,616	93,598	98.861	104,419
C8D yards	39,460	40,190	40,901	41,460	41,942	42,409	42,886	43,426	43,906	46,455	49,303	52,071	52,561	53,046	53,529	54,008	54,485	56,855	59,174	61,568
Sludge \& Mixed Inerts - tons	26,332	26,820	27,294	27,667	27,988	28,301	28,618	28,979	29,299	31,000	32,900	34,748	35,075	35,399	35,721	36,040	36,358	37,940	39,488	41,085
Green Waste GW tons	45,294	45,988	46,677	47,281	47,843	48,399	48,968	49,577	50,155	53,197	56,644	60,113	60,750	61,379	62,002	62,617	63,227	66,233	69,110	72,078
GW yards	32,392	32,888	33,380	33,813	34,214	34,612	35,019	35,454	35,868	38,043	40,508	42,990	43,445	43,895	44,340	44,780	45,216	47,366	49,423	51,546
Wood Waste																				
Wood tons	1,556	1,602	1,607	1,580	1,566	1,551	1,545	1,556	1,562	1,605	1,651	1,682	1,690	1,699	1,707	1,715	1,724	1,766	1,810	1,855
Wood yards	5,110	5,263	5,276	5,188	5,143	5,095	5,075	5,112	5,129	5,271	5,422	5,524	5,551	5,579	5,606	5,633	5,661	5,801	5,945	6,092
Food Waste - Tons	9,465	9,465																		
SS Inert Materials SS Inert tons	17,770	18,116	18,077	17,830	17,751	17,668	17,668	17,802	17,916	18,623	19,426	20,171	20,350	20,525	20,697	20,866	21,033	21,843	22,594	23,361
SS Inert tons	17,553	18,116 12,878	18,920	17,8762	17,751 12,698	17,668	17,668	17,802 12,714	17,9780	18,623 13,219	19,4368	20,171	20,31, 14,178	20,525 14,268	20,697	20,866 14,447	${ }_{1}^{21,033}$	11,943	15,416	15,863
Appliance - each	8,566	8,761	8,868	8,976	9,085	9,195	9,308	9,422	9,538	10,141	10,834	11,553	11,689	11,823	11,956	12,086	12,215	12,845	13,437	14,047
Water Treat Sludge - tons total accepted tons	$\begin{array}{r} 1,160 \\ 420,870 \end{array}$	$\begin{gathered} 1,160 \\ 429,581 \end{gathered}$	$\begin{gathered} 1,160 \\ 436,071 \end{gathered}$	$\begin{gathered} 1,160 \\ 440,261 \end{gathered}$	$\begin{array}{r} 1,160 \\ 444,343 \end{array}$	$\begin{gathered} 1,160 \\ 448,242 \end{gathered}$	$\begin{gathered} 1,160 \\ 452,629 \end{gathered}$	$\begin{gathered} 1,160 \\ 458,365 \end{gathered}$	$\begin{gathered} 1,160 \\ 463,478 \end{gathered}$	$\begin{array}{r} 1,160 \\ 490,330 \end{array}$	$\begin{gathered} 1,160 \\ 520,722 \end{gathered}$	$\begin{gathered} 1,160 \\ 549,635 \end{gathered}$	$\begin{gathered} 1,160 \\ 554,959 \end{gathered}$	$\begin{gathered} 1,160 \\ 560,253 \end{gathered}$	$\begin{gathered} 1,160 \\ 565,526 \end{gathered}$	$\begin{gathered} 1,160 \\ 570,772 \end{gathered}$	$\begin{gathered} 1,160 \\ 577,009 \end{gathered}$	$\begin{gathered} 1,160 \\ 602,174 \end{gathered}$	$\begin{gathered} 1,160 \\ 628,050 \end{gathered}$	$\begin{gathered} 1,160 \\ 654,880 \end{gathered}$
Disposed Tonnage																				
Residue Direct																				
total disposed tons	238,419	243,248	244,396	247,248	249,824	252,294	254,953	258,260	261,196	276,575	293,923	310,455	313,440	316,410	319,369	322,315	325,257	339,972	354,599	369,683

Note - Where conversion from cubic y :

Indicators																				
Population (Dept of Finance)	382,047	386,684	391,424	396,203	401,017	405,876	410,850	415,893	421,002	447,625	478,196	509,936	515,952	521,871	527,709	533,457	539,147	566,954	593,084	620,037
Total Taxable Sales - billions \$				11.75					14.50	17.25	21.10	25.07								
Total Employment (Caltrans)	160,470	164,460	168,260	170,810	172,700	174,460	176,240	178,520	180,270	189,810	200,120	209,330	210,795	212,271	213,757	215,253	216,760	224,453	232,420	240,669
New Homes Permitted	2,700	2,812	2,685	2,439	2,307	2,180	2,100	2,086	2,063	2,002	1,943	1,861	1,861	1,861	1,861	1,861	1,861	1,861	1,861	1,861
Households	142,929	145,360	147,892	150,308	152,505	154,581	156,544	158,435	160,313	169,379	178,324	186,891								
Taxable Retail Sales -thousands	7,875,859	8,325,019	8,759,683	9,258,356	9,660,761	10,061,117	10,468,766	10,908,933	11,407,353	13,563,013	16,562,252	19,664,870	20,254,816	20,862,460	21,488,334	22,132,984	22,796,973	26,427,940	30,637,226	35,516,942
Sources																				
http://www.dof.ca.gov/Forecasting/De	382,047	386,684	391,424	396,203	401,017	405,876	410,850	415,893	421,002	447,625	478,196	509,936	515,952	521,871	527,709	533,457	539,147	566,954	593,084	620,0
Dept of Finance P-2 Stat and County Population Projections - Race																				
Ethnicity and 5-Year Age Groups 20102060 (by Year)																				
http://www.dot.ca.gov/hq/tpp/office s/eab/docs/Full\%20Report\%202015.p																				
df	387,941	394,820	401,792	408,633	415,207	421,537	427,693	433,735	439,689	468,841	497,319	524,140	524,697	525,254	525,812	526,371	526,924	547,072	564,094	579,729

http:///www.dof.ca.gov//Forecasting/D
emographics/Estimates/E-4/1991-
emographics/Estimates/E-4/1991-
$2000 /$
Historical City, County, and State
Population Estimates, 1991-2000,
Population Estimates, 1991-2000,
with 1990 and 2000 Census Counts
http://www.dof.ca. gov/Forecasting/D

Indicator \% change	2017	2018	2019	2020	2021	2022	2023	2024	2025	2030	2035	2040	2041	2042	2043	2044	2045	2050	2055	2060
Population (Dept of Finance)	1.16\%	1.21\%	1.23\%	1.22\%	1.22\%	1.21\%	1.23\%	1.23\%	1.23\%	1.26\%	1.35\%	1.22\%	1.18\%	1.15\%	1.12\%	1.09\%	1.07\%	0.97\%	0.89\%	0.90\%
Total Employment - thousands	2.74\%	2.99\%	2.31\%	1.52\%	1.11\%	1.02\%	1.02\%	1.29\%	0.98\%	1.17\%	1.01\%	0.89\%	0.70\%	0.70\%	0.70\%	0.70\%	0.70\%	0.70\%	0.70\%	0.70\%
New Homes Permitted	2.58\%	4.17\%	-4.54\%	-9.13\%	-5.43\%	-5.49\%	-3.68\%	-0.65\%	-1.13\%	0.87\%	-0.92\%	-0.40\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00
Taxable Retail Sales -thousands	6.19\%	5.70\%	5.22\%	5.69\%	4.35\%	4.14\%	4.05\%	4.20\%	4.57\%	3.92\%	3.96\%	3.39\%	3.00\%	3.00\%	3.00\%	3.00\%	3.00\%	3.00\%	3.00\%	3.00\%
			-1.11	-3.81\%		24\%	-1.33\%	32\%	07\%	1.02\%	.05\%	0.25\%	0.35\%	0.35\%	0.35\%	0.35\%	0.35\%	0.35\%	0.35\%	

[^8]WPWMA Waste Stream Projectio
Adjusted for SB 1383
Material Type Accepted
Municipal Solid Waste
Municipal Solid Waste
MSW tons
MSW yards
Construction/Demolition
Construction
c\&D tons
C\&D yards
Sludge \& Mixed Inerts - tons
Green Waste
GW tons
GW tons
GW yards
Wood Waste
Wood tons
Wood tyards
Food Waste - Tons
SS Inert Materials
SS Inert tons
SS Inert tons
SS Inert yards
Appliance - each
Source Separated Food Waste - tons
Water Treat Sludge - tons
Water Treat Sludge -
total accepted tons
Disposed Tons

Projections																			
2017	2018	2019	2020	2021	2022	2023	2024	2025	2030	2035	2040	2041	2042	2043	2044	2045	2050	2055	2060
227,745	231,959	242,387	245,703	244,680	243,662	242,647	241,637	240,589	254,560	270,161	285,333	288,015	290,675	293,318	295,942	298,557	311,547	324,252	337,371
80,408	81,896	83,34	84,484	85,465	86,418	87,389	88,490	89,468	94,663	100,465	106,107	107,104	108,093	109,076	110,052	111,024	115,855	120,579	125,458
63,743	66,108	66,985	66,916	67,105	67,221	67,627	68,666	69,593	74,056	79,389	83,899	84,822	85,755	86,698	87,652	88,616	93,598	98,861	104,419
39,460	40,190	40,901	41,460	41,942	42,409	42,886	43,426	43,906	46,455	49,303	52,071	52,561	53,046	53,529	54,008	54,485	56,855	59,174	61,568
26,332	26,820	27,294	27,667	20,750	15,563	11,672	8,754	2,930	3,100	3,290	3,475	3,507	3,540	3,572	3,604	3,636	3,794	3,949	4,109
45,294	45,988	46,677	47,281	51,670	56,453	61,685	67,449	70,031	74,278	79,090	83,935	84,825	85,703	86,572	87,431	88,283	92,480	96,496	100,641
32,392	32,888	33,380	33,813	34,214	34,612	35,019	35,454	35,868	38,043	40,508	42,990	43,445	43,895	44,340	44,780	45,216	47,366	49,423	51,546
1,556	1,602	1,607	1,580	1,566	1,551	1,545	1,556	1,562	1,605	1,651	1,682	1,690	1,699	1,707	1,715	1,724	1,766	1,810	1,855
5,110	5,263	5,276	5,188	5,143	5,095	5,075	5,112	5,129	5,271	5,422	5,524	5,551	5,579	5,606	5,633	5,661	5,801	5,945	6,092
9,465	6,000							0											
17,770	18,116	18,077	17,830	17,751	17,668	17,668	17,802	17,916	18,623	19,426	20,171	20,350	20,525	20,697	20,866	21,033	21,843	22,594	23,361
12,553	12,878	12,920	12,762	12,698	12,627	12,614	12,714	12,780	13,219	13,698	14,087	14,178	14,268	14,358	14,447	14,536	14,979	15,416	15,863
8,656	8,761	8,868	8,976	9,085	9,195	9,308	9,422	9,538	10,141	10,834	11,553	11,689	11,823	11,956	12,086	12,215	12,845	13,437	14,047
	3,100	3,138	3,176	3,215	3,254	3,294	3,334	3,375	3,589	3,834	4,088	4,136	4,184	4,231	4,277	4,322	4,545	4,755	4,971
1,160	1,160	1,160	1,160	1,160	1,160	1,160	1,160	1,160	1,160	1,160	1,160	1,160	1,160	1,160	1,160	1,160	1,160	1,160	1,160
420,870	429,216	436,071	440,257	437,054	435,892	436,901	440,298	437,384	462,790	491,592	519,023	524,098	529,143	534,167	539,165	544,153	569,068	593,688	619,219

Note - Where conversion from cubic yi

Appendix 4A-1

Design Documentation Public Area

File from Eric Oddo em All Days	ailed 8/23/17			Weekdays				Weekends				Peak Day	urday May 27			
Material	Tonnage	Unit type	Vehicle Count	Material	Tonnage	Unit type	Vehicle Count	Material	Tonnage	Unit type	Vehicle Count	Material	Tonnage	Unit type		Vehicle Count
Appliance	32.4	c	26.05	Appliance	28.1	c	22.03	Appliance	43.2	c	36.22	Appliance	66.0		c	53.00
BB/DO Recyclables	2.2	w	2.73	BB/DO Recyclables	2.2	w	2.34	BB/DO Recyclables	2.4	w	3.57	BB/DO Recyclabes	1.2		w	4.00
вUҮваск	103.2	c	103.23	вUYваск	86.8	c	86.77	вUYваск	144.8		144.81	BuvBack	236.0		c	236.00
E-WASTE	46.0	c	35.49	E-WASTE	41.8	c	29.78	E-WASTE	56.5		49.88	E-WASTE	58.0		c	53.00
HHw	62.5	c	${ }^{62.43}$	Hнw	57.5	c	57.46	HHw	75.1		75.07	HHw	113.0		c	113.00
Tires	14.7	c	4.83	Tires	12.9	c	4.12	Tires	18.8		6.54	Tires	89.0		c	16.00
X-APPL.	3.2	w	1.18	X-APPL.	2.9	w	1.06	X-APPL.	4.1		1.48	X-APPL.	0.0		w	0.00
x-C8D-MRF	26.2	w	7.06	x-C8D-MRF	24.8	w	6.25	x-C8D-MRF	29.9	w	9.10	x-CQD-MRF	49.6		w	13.00
X-MsW-LAND	1.6	w	1.44	X-MSW-LAND	1.6	w	1.38	X-Msw-LAND	2.1	w	2.00	X-MSW-LAND	65.4		w	28.00
X-MSW-MRF	30.0	w	11.68	X-MSW-MRF	23.7	w	8.57	x-MSW-MRF	46.1	w	19.62	X-MSW-MRF	0.0		w	0.00
Y-CQD-ZWAL	109.9	v	79.67	Y-C8D-ZWAL	102.9	v	73.60	Y-CQD-ZWAL	127.6		95.12	Y-CCD-zWAL	210.3		v	156.00
r -GRN-ZWAL	87.4	v	59.13	Y-GRN-ZWAL	71.3	v	46.57	r-GRN-ZWAL	128.2		90.93	Y-GRN-ZWAL	218.5		v	156.00
r -Msw-zWAL	247.3	v	179.65	r-Msw-zWAL	192.4	v	${ }^{139.91}$	r-Msw-zWAL	386.0		279.98	Y-Msw-zWAL	587.8		v	408.00
r-wD-zWAL	12.5	v	8.14	r-wo-zWAL	10.3	v	6.55	r-wo-zWAL	18.0		12.13	r-woz-wal	43.3		v	35.00
total out		zwal	32.58	total out		zwal	266.64	total out			478.16	total out		wal		
		bybac	232			buybac	20							back		
		vehicle									790.68			ehicle in		
												Note: Based on BV Report	erial, assum	-Walls		
Conversion Factors:	Green-328 b/cy	$3 \mathrm{lbs} / \mathrm{c}$.										Note: peak day based on pe	fic loading, no	nage		
code descriptions				Flow Diagram												
c	number of indivic															
\checkmark -	cubic yards															
	tons															
Appliance BUYBACK	refridgerated an residential recycla	gerated applia		Appliance												
	electronic wastes															
HHW	residentially and	lly generated		E-WASTE		c Tipping Area		${ }_{\text {x-APPL. }}^{\text {B/a }}$ (
BB/DO Recyclables	Recyclable mater	d and buybac		${ }^{\text {HHw }}$				x-C8D-MRF								
Tires	sent to MRF for b			${ }_{\text {Treses }}^{\text {Trectoze }}$				X-MSW-LAND								
	Carand fruck tres	d and non-refi														
x-C8D-MRF	C8D sent to MRF			r-msw-zwal												
X-MSW-LAND	MSW sent to and			r-wD-zwal												
X-MSWW-MRF Y-CQD-ZWAL	MSW sent to MRE															
r-GRN-zWAL	Greenwaste															
Y-MSW-ZWAL	Msw															
r-wo-zwal	Woodwaste															

WPWMA Public Tipping/Buy-back/HHW Area 2017 Data - weights
Average Day (of all days)

Average Day (of all days)	Vehicle Count	Per Hour
Total Public Area (incoming)	326.6	32.7
Toal Buy-back (incoming)	232.0	23.2
Average Week Day	Vehicle Count	Per Hour
Total Public Area (incoming)	266.6	26.7
Toal Buy-back (incoming)	200.2	20.0
Average Weekend Day	Vehicle Count	Per

Peak Day (based on traffic not tons) - 5/27/17 (a Saturday, open 8-5)	Vehicle Count	Per Hour	2017 Vehicle C Peak Hour (1.5 peaking)		$2042 \mathrm{Pea}$ growth		Unload Slots	2042 Public Area needed
Total Public Area (incoming)	755.0			125.8		169.9	56.	28.3125
Toal Buy-back (incoming)	471.0			78.5		106.0		

Current Slots Needed Based on Peak Hours	Compared to Existing Configuration	\% Current Facility is undersized for current peak		
				Size
				increase
				for 2042
41.9		30	40\%	89\%
26.2		13	101\%	172\%

MRF \& Landfill
The facility is open for disposal every day of the year with limited hours on Thanksgiving, Christmas Day and New Year's Day
Monday - Friday 7 a.m. -5 p.m.
Weekends 8 a.m. -5 p.m.
(916) 543-3960

Buy-Back Center
CRV Pricing \& Acceptance
Monday - Friday 7 a.m. -5 p.m
Weekends 8 a.m. -5 p.m.
(916) $645-5230 \times 111$

Household Hazardous Waste Drop-off
Everyday
(916) $645-5230 \times 107$

Public Area Traffic Analysis

AVERAGE WEEKEND

Unload Time	Unloading Positions
(min)	
10	2

PEAK DAY

Material	Qty	Assumed	2017 Peak Day				2042 Projections				Unload Time (min)	Unloading Positions
	Measure	Destination	Peak vpd	Peak vph	Daily Qty	Avg Load	Peak vpd	Peak vph	Daily Qty	Bins/Day		
Appliance	C	PDO	53	7	66	1.2	72	9	90		10	2
BUYBACK	C	BB	236	30	236	1.0	319	40	319			
E-WASTE	C	BB	53	7	58	1.1	72	9	79			
HHW	C	BB	113	15	113	1.0	153	20	153			
Tires	C	PDO	16	2	89	5.6	22	3	122		10	1
Y-C\&D-ZWAL	V	PDO	156	20	210.3	1.3	211	27	284	8.1	15	7
Y-GRN-ZWAL	V	PDO	156	20	218.5	1.4	211	27	296	8.4	15	7
Y-MSW-ZWAL	V	PDO	408	51	587.8	1.4	551	69	794	22.7	15	18
Y-WD-ZWAL	V	PDO	35	5	43.3	1.2	48	6	59	1.7	15	2
		Zwall	824	105			1,115	141				
		Buy Back	402	52			544	69				

Materials	- The following materials will be collected at the Public Drop Off (PDO) Area MSW-ZWAL C\&D-ZWAL GRN-ZWAL WD-ZWAL TIRE APPL - Design for PDO area based on accommodating projected peak daily/hourly traffic.
Traffic	- 2017 Peak daily traffic $=824$ vpd - 2042 peak traffic based on projected increase (35\%) = 1115 vpd - Peak hourly traffic assumed to be 125% of average hourly. 10 hour day assumed - 2042 peak hourly traffic = 141 vph
Material Handling	- MSW, C\&D, GRN, and WD handled in standard 40 yd3 open-top roll-off bins. 1 extra bins provided per commodity + two system spares. 24 bins total - Tires handled in 40 yd3 cage bins loaded at grade (2 bins) - Appliances handled via loading dock/trailer (2 trailers)
Dust Controls	- N/A
Odor Controls	- N/A
Working Surfaces	- Customer unloading areas would be concrete slab extending 10 ft back from edge of Z-wall. Bin area at base of Z-wall would be concrete slab. - All other areas would be heavy-duty asphalt. - Concrete and heavy-duty asphalt surfaces will be designed to withstand the weight of wheel loaders and trucks. These surfaces will provide the equivalent level of groundwater protection as a compact clay liner.
Surface Water Controls	- Surface water from areas outside of the facility would be diverted around/away from the operating areas using ditches, swales and berms. - Outdoor working surfaces around the facility would be sloped at a minimum of 0.5% to promote drainage. Runoff from these areas would be captured through a combination of ditches and swales, and transferred to the facility's main detention pond.
Fire Protection	- Hydrants would be situated in close proximity to the PDO area in accordance with Fire Code requirements.
Utilities Requirements	- Electricity (1-phase service)
Mobile Equipment	- Roll-off bin truck would be required on a part-time basis.

Appendix 4A-1
 Design Documentation
 C\&D Area

New C\&D pad:

Plan Concept 2 Quantities
New C\&D Pad:

From: Goodrich, Janet/SAC
Sent: Wednesday, October 31, 2018 1:48 PM
To: McRae, Jennifer/SJC; Lopez, Lyndsey/PDX
Subject:
FW : another question

Good news, looks like demo of the 60% or whatever you used is good, but should be for all options I believe, as it is not level with the good pad. Don't use the repair part, assume we demo on all 3

From: Keith Schmidt [mailto:KSchmidt@placer.ca.gov]
Sent: Wednesday, October 31, 2018 1:41 PM
To: Goodrich, Janet/SAC Janet.Goodrich@jacobs.com
Subject: [EXTERNAL] RE: another question
If you want them on the same plane (elevation), then you would have to demo because they are not close (ie. $3-6$ difference). If the location/elevation was fine, then I would probably spend $\$ 150-200 \mathrm{k}$ to repair the surface as needed.

The area I've marked for demo has seen a lot of repairs and wear, and it would need probably $\$ 150-200 \mathrm{k}$ in repair to make the surface condition good again.

Keith J. Schmidt, P.E. | Senior Civil Engineer | Western Placer Waste Management Authority | (Mail) 11476 "C" Ave. Auburn, CA 95603 | (Physical) 3033 Fiddyment Rd. Roseville, CA 95747 | (916) 543-3986 (Direct) | (916) 543-3990 (Fax)

From: Goodrich, Janet/SAC [mailto:Janet.Goodrich@jacobs.com]
Sent: Wednesday, October 31, 2018 1:27 PM
To: Keith Schmidt
Subject: RE: another question
This may make more sense, trying to decide if this area needs demolition before construction or if we can assume this pad stays. See the red part.

From: Goodrich, Janet/SAC
Sent: Wednesday, October 31, 2018 1:25 PM
To: Keith Schmidt KSchmidt@placer.ca.gov
Subject: another question
Just to verify. Is the existing C\&D area on the NEWer, S, good pad, meaning we can keep it or is it old pad that needs to be demolished regardless?

NOTICE - This communication may contain confidential and privileged information that is for the sole use of the intended recipient. Any viewing, copying or distribution of, or reliance on this message by unintended recipients is strictly prohibited. If you have received this message in error, please notify us immediately by replying to the message and deleting it from your computer.

C\&D Processing Equipment Quote

From:	Chapman, Katie/SLC
Sent:	Monday, September 17, 2018 10:55 AM
To:	Lopez, Lyndsey/PDX; McRae, Jennifer/SJC
Subject:	RE: C\&D Processing Equipment
Categories:	Red Category

Hi Lyndsey and Jenny,
I wanted to give you guys an update on this:

1) I called Bulk Handling and spoke to the regional salesperson for CA, Angela. She estimates $\$ 3 \mathrm{M}-\$ 4 \mathrm{M}$ for a line that will handle $40-50$ tons per hour (will handle Will Dickinson's estimate working 8 hour days and 5 days per week). This estimate is turn-key and includes shipping, installation and start-up.
2) I called Green Machine and the rep is getting a quote to me tomorrow morning for their 50 ton per hour system. These guys were more willing to do a real cost estimate at this level. The system will be pretty basic using some hand sorters, pull out nails, cardboard, ect. Here is his contact info just in case:
John Sherling
Systems Engineer, Sales

Sales Office:
11 E. Genessee St.
Baldwinsville, NY 13027
315-303-5448 x106

I'll send over the other quote tomorrow. Let me know if you need more details or anything else on this!
-Katie

From: Lopez, Lyndsey/PDX
Sent: Friday, September 7, 2018 12:03 PM
To: Chapman, Katie/SLC Katie.Chapman@jacobs.com; McRae, Jennifer/SJC Jennifer.McRae@jacobs.com
Subject: C\&D Processing Equipment

Hi Katie - We need to put in a better estimate for the C\&D equipment that WPWMA will eventually need to purchase. We will need a process line capable of processing about 86,000 tons per year (based off of Will Dickinson's Growth projections v12 with growth factor.xls). Can you look at the two vendors below and see if we can get some quick info for processing lines? If it's not readily available. Please let me know.
http://www.bulkhandlingsystems.com/solutions/construction-and-demolition/
https://greenmachine.com/waste-recycling-equipment-manufacturer/solutions/construction-demolition-cd-waste-recycling-equipment/

Appendix 4A-1
 Design Documentation
 Compost Area

Summary of Compost Feedstocks

Oct-17-2017
X-ref to Growth Projections V12

	Note	$\mathbf{2 0 2 5}$ (tons)	\% of Total	2042 (tons)	Note	
GW Drop-off (yd3)	a	35,868		43,895	g	
GW Drop-off (tons @ 328 Ib/yd3)		5,882		7,199		
Curbside GW/FW Mixture	b	70,031		85,703	h	
FW portion (d)	c	19,876	28.4%	24,324		
\quad GW portion	d	50,155	71.6%	61,379		
FW diverted from commercial	e	3375		4,184	i	
FW diverted from MSW via MRF	f	2,208			2,703	f
Total Organics to Compost		$\mathbf{8 1 , 4 9 6}$			$\mathbf{9 9 , 7 8 8}$	

a) Cell AO75/Growth tab
b) Cell AO74/Growth tab
c) 90% of Cell H52/SB1383 tab - Will assumes 90% of diverted food waste comes from curbside program
d) Cell D14, SB1383 tab
e) Cell A084/Growth tab
f) Balance of available organics (diverted from MSW via MRF)
g) Cell BF75/Growth tab
h) Cell BF74/Growth tab
i) Cell BF84/Growth tab

	comm	

\(\left.\begin{array}{ll}\hline Capacity \& - Designed for 2042 projections

\& - GW: 7,200 tpy (171 tpw peak, 138 tpw average)

\& - Peak weekly volume: 1,043 yd3\end{array}\right]\)\begin{tabular}{ll}
Feedstock \& - Source-separated green waste will be unloaded directly into one of two outdoor receiving piles situated within

Receiving \& | this area. Each receiving pile will be sized to hold the equivalent amount of material delivered during the peak | |
| :--- | :--- |
| | design week. Unloading of materials by customers would alternate between piles on a week-by-week basis. |

\& - Material will periodically be pushed up into the receiving piles using a front-end loader. Maximum height of the

\& receiving pile will be 12 feet.
\end{tabular}

Capacity	- Capacity based on fixed volumetric capacity rather than weekly waste flow.
Feedstock Receiving	- Wood waste will be unloaded directly by customers into an outdoor receiving pile situated within this area. The receiving pile will be sized to hold 1,000 yd3 of material. - Material will periodically be pushed up into the receiving piles using a front-end loader. Maximum height of the receiving pile will be 12 feet. - The width of the receiving pile (i.e. 75 ft) would allow for 5 customers to unload at one time. - Sufficient space would be provided in front of the receiving piles to allow for maneuvering and backing up of truck/utility trailer combinations. - The unloading area and receiving pile will be situated to allow for first-in/first-out access to the stockpiled material: customers will unload material on the front-side of the pile, while operations staff will remove material from the back-side. The pile will serve as a barrier between customers and operations staff/equipment. - Working surfaces in the receiving, grinding and storage area will consist of asphalt.
Pre-Processing	- All pre-processing will occur outdoors and within the receiving area. Feedstocks will be visually inspected by operations staff prior to pre-processing. Visible contaminants would be manually removed and disposed of. - Pre-processing would consist of grinding materials from the receiving piles using a track-mounted horizontal grinder. After grinding, feedstocks would be pushed into a 12 ft high stockpile located behind the receiving piles and away from the customer unloading area. The grinder would be situated between the receiving pile and the ground material stockpile during operation. - Feedstocks would be moved/handled with a front-end loader equipped with a grapple bucket.
Odor Controls	- N/A
Dust Controls	- A potable misting system will be available for use around the grinder on an as-required basis.
Leachate and Surface Water Controls	- Surface water from areas outside of the outdoor receiving area would be diverted around/away from the operating areas using ditches, swales and berms. - The working surface in the receiving area would be sloped at a minimum of 0.5% to promote drainage. Run-off from the area would be captured through a combination of perimeter ditches and swales, and transferred to an onsite detention pond. Filter berms would be incorporated into drainage ditches and swales as necessary to reduce sediments. - The detention pond would be underlain by a geosynthetic liner and would be sized to contain run-off from a 1:25 year, 24-hour storm event. The pond will also include additional capacity or "dead storage" beyond the 1:25 year run-off water volume.
Fire Protection	- Stockpile heights would be limited to 14 ft . Stockpiles would be surrounded on all sides by equipment aisles with a minimum width of 20 ft . - Hydrants would be situated in close proximity to the receiving area in accordance with Fire Code requirements.
Utility Requirements	- Potable water
Mobile Equipment	- One front-end loader (e.g. Cat 950 or equivalent) with and oversized grapple bucket, and a track-mounted horizontal grinder would be dedicated on a part-time basis to this area.

Capacity	- Designed for 2042 projections - Peak capacity: 8750 yd3 per week (6690 m3 per week)
Screening and Product Storage	- Following curing, material will be relocated to screening and storage area and placed in a temporary stockpile. The material will be moved from the curing area to the temporary stockpile using front-end loaders, tandemaxle trucks, and/or walking floor trailers. - Materials in the temporary stockpile will be screened using an electrically-powered stationary trommel or star screen with a 20 to 25 yd3 feed hopper. The screening equipment will be covered by a light weight steel-fabric structure to allow for continuous operation during rainy periods. - After screening, the finished product will be stockpiled in conical piles while awaiting shipping to end users. Each product pile will hold approximately 12,000 to 13,000 yd3 of material and will be constructed using a 100 ft long stacking conveyor. Stockpiles will be separated by ~ 15 ft aisles to allow for equipment access. - Space has been provided for three storage piles, which corresponds to roughly two month's worth of finished product production. This will allow for continued operation during slow product marketing periods (e.g. winter months). It will also allow for product to be further aged (cured) before it leaves the facility, which may be necessary for certain markets/end uses. - Overs from the screening process will be reused as an amendment for fresh feedstocks.
Working Surfaces	- The working surface in the screening and product storage area would consist of a compacted gravel base/subbase overlain by heavy-duty asphalt that is designed to withstand the weight of wheel loaders and trucks. The asphalt surface will provide the equivalent level of groundwater protection as a compact clay liner. - Concrete slabs will be installed instead of asphalt in areas where loaders and trucks will frequently stop and start, or where abrasion from loader buckets is expected.
Leachate and Surface Water Controls	- Surface water from areas outside of the screening and product storage area would be diverted around/away from the operating areas using ditches, swales and berms. - Working surfaces in the screening and product storage area would be sloped at a minimum of 0.5% to promote drainage. Run-off from these areas would be captured through a combination of perimeter ditches and swales, and transferred to an onsite detention pond. Filter berms would be incorporated into drainage ditches and swales as necessary to reduce sediments. - The detention pond would be underlain by a geosynthetic liner and would be sized to contain run-off from a 1:25 year, 24-hour storm event. The pond will also include additional capacity or "dead storage" storage beyond the 1:25 year run-off water volume.
Fire Protection	- Hydrants would be situated in close proximity to the screening and storage area in accordance with Fire Code requirements.
Utilities Requirements	- Electricity (3-phase)
Mobile Equipment	- One front-end loader (e.g. Cat 980 or equivalent) with an oversized bucket for screening and product loading operations.

Summary of Compost Options

Compost Option 1: Windrow with no primary screening
Compost Option 2: Windrow with primary screening and separate curing windrows
Compost Option 3: ASP with primary screening and windrow curing
Compost Option 4: ASP with primary screening and ASP curing

Capacity	- Designed for 2042 projections - Pre-processed (shredded) GW/FW: 99,789 tpy (2,166 tpw peak, 1,919 tpw average) - Peak weekly capacity: 9,715 yd3 (7,426 m3) including amendments
Product Quality Assumptions	- The compost product produced at the facility would be fully stabilized and matured, and suitable for use in residential, landscaping, and agricultural applications.
Active Composting (ASP)	- Active composting would be completed using a negatively-aerated static pile (ASP) composting system with an extended bed configuration. - The ASP composting system would be sized to provide a 4 week active composting process. Four ASP beds would be provided, each with a capacity of 9,715 yd3. Each bed would have five aeration zones. - The ASP composting system would be located outdoors, and would be contained within a perimeter wall constructed from pre-cast concrete blocks. Compost piles would be aerated using a below-grade pipe system with risers embedded in a concrete slab. - Pre-processed feedstocks will be moved from the Receiving Building to the active composting area using frontend loaders or tandem-axle trucks.
Primary Screening	- Following active composting, material will be physically removed from the windrows and screened to remove coarse amendments. This will reduce the volume of material that requires curing, and allow for reuse of the coarse amendment. - Materials will be screened to a 1-inch minus particle size using a stationary trommel or star screen system. After screening, the undersized material will be relocated to the curing pad for additional processing.
Curing (ASP)	- After feedstocks have been stabilized in the active composting system, additional curing will be completed to ensure materials meet regulatory and market requirements. A minimum residence time of four weeks is expected in order for the material to meet stability/maturity criteria. - Curing will be completed using an outdoor positively-aerated ASP system with an extended bed configuration. Four ASP beds would be provided, each with a capacity of 6,995 yd3. - The ASP curing system would contained within a perimeter wall constructed from pre-cast concrete blocks. Compost piles would be aerated using a below-grade pipe system with risers embedded in a concrete slab. - Materials will be moved from the active ASP system to the screening system, and then to the curing ASP system using a front-end loader. - The curing pad will be a separate area from the active composting pad, which will allow run-off from these two areas to be collected and managed separately.
Working Surfaces	- ASP systems would be built overtop of a concrete slab. Working areas around the ASP systems would consist of compacted gravel base/sub-base overlain by heavy-duty asphalt - Concrete and heavy-duty asphalt surfaces will be designed to withstand the weight of wheel loaders and trucks. These surfaces will provide the equivalent level of groundwater protection as a compact clay liner.
Odor Controls	- Process air collected from the negative ASP composting system would be treated using a biofilter. - The biofilters would consist of a 1.5 m thick layer of coarse wood chip blended with compost overlying a network of HDPE air distribution pipes. The biofilters would be situated on an asphalt pad which is sloped ($\sim 1 \%$) for drainage and collection of leachate from the biofilter. Leachate would be directed to an aerated collection pond. - Odor control in the curing operation will be achieved through the implementation and maintenance of good operating practices.
Leachate and Surface Water Controls	- Surface water from areas outside of processing areas would be diverted around/away from the operating areas using ditches, swales and berms. - Working surfaces in the active ASP composting area would be sloped at a minimum of 0.5% to promote drainage. Run-off from this area would be captured in a dedicated detention pond. - Working surfaces in the curing area would be sloped at a minimum of 0.5% to promote drainage. Run-off from this area would be captured through a combination of perimeter ditches and swales, and transferred to a second detention pond. This pond would potentially be shared with the screening and product storage area. Filter berms would be incorporated into drainage ditches and swales as necessary to reduce sediments.

- The detention ponds would be underlain by a geosynthetic liner and would be sized to contain run-off from a 1:25 year, 24-hour storm event. The curing pad pond will also include additional capacity or "dead storage" beyond the 1:25 year run-off water volume.

Fire Protection - Hydrants would be situated in close proximity to the composting, curing and storage areas in accordance with Fire Code requirements.

Utilities Requirements	\bullet Potable water • Electricity (3-phase service).
Mobile Equipment	- One front-end loader (e.g. Cat 980 or equivalent) with and oversized bucket dedicated to ASP composting and curing operations.

Active ASP Area

Curing ASP Area

Biofilter Sizing	
Media Depth	5 ft
Biofilter Loading Rate	$5 \mathrm{cfm} / \mathrm{ft}^{2}$
Number of Biofilter Beds	1
Total Air Flow Rate	95,207
Air Flow Rate Per Biofilter	$95,207 \mathrm{cfm}$
Treatment Area Footprint	$19,041 \mathrm{ft}^{〔}$
EBRT	60 sec
Treatment Area Width	185.0 ft
Treatment Area Length	103.0 ft
Pipe Offset From Edge of Media	7.5 ft
Total Width of Media Bed	$\mathbf{2 0 0 . 0} \mathrm{ft}$
Total Length of Media Bed	$\mathbf{1 1 8 . 0} \mathbf{~ f t}$
\# of Header Branches	2
Header Diameter	48 in
Header Air Velocity	$3788 \mathrm{ft} / \mathrm{min}$
Number of Laterals	38 ran
Lateral Diameter	12 in
Air Flow per Lateral	2505 cfm
Lateral Air Velocity	$3190 \mathrm{ft} / \mathrm{min}$
Individual Lateral Length	110.5 ft
Lateral Spacing	5.00 ft
Total Length of All Laterals	4199.0 ft

From:	Goodrich, Janet/SAC
To:	MCRae, Jennifer/SJC; Curtis, Stephanie/SAC
Cc:	Lopez, Lyndsey/PDX; Wright, Shannon/SAC
Subject:	FW: List of things to confirm
Date:	Friday, October 19, 2018 8:18:08 AM

So we need to include the 200k below, cite client reference, for the interim system and NOT include the building for compost receiving, leave in the NPV, as we will need it, but don't include either as capital or replacement.

From: Eric Oddo [mailto:EOddo@placer.ca.gov]
Sent: Friday, October 19, 2018 8:09 AM
To: Goodrich, Janet/SAC Janet.Goodrich@jacobs.com; Keith Schmidt KSchmidt@placer.ca.gov; Stephanie Ulmer SUImer@placer.ca.gov
Cc: Michelle White MWhite@placer.ca.gov; Lopez, Lyndsey/PDX Lyndsey.Lopez@jacobs.com
Subject: [EXTERNAL] RE: List of things to confirm

Janet - no problem re-asking, things continue to develop and change on this front.

At this point, it is likely the WPWMA will pay for the piping and blowers for the +ASP system. Nortech is putting a proposal together now that includes extending electrical and adding blowers for this purpose. The cost is $\sim \$ 200 \mathrm{k}$.

Re: the building - let's list it out separately for use in the odor discussions. I don't want it to be construed that if it is added in to the NPV, that the WPWMA plans to pay for it on its own.

Thanks
Eric

From: Goodrich, Janet/SAC [mailto:Janet. Goodrich@jacobs.com]
Sent: Thursday, October 18, 2018 4:41 PM
To: Eric Oddo; Keith Schmidt; Stephanie Ulmer
Cc: Michelle White; Lopez, Lyndsey/PDX
Subject: List of things to confirm

1. Sorry to re-ask this, but we have differing recollections of the resolution of this item. Are we including costs for + ASP Piping and blowers, or assuming the operator handles that? At this point, we are including it.
2. Another item to confirm. Should we include the compost receiving building in the NPV? At this point we are including it, but we can also list it out separately to use in the odor discussions.
[^9]NOAA Atlas 14, Volume 6, Version 2 Location name: Roseville, California, USA*

Latitude: 38.8379°, Longitude: -121.349${ }^{\circ}$
Elevation: 123.93 ft** $^{* *}$
source: ESRI Maps
** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland
PF tabular I PF graphical I Maps \& aerials
PF tabular

PDS-based point precipitation frequency estimates with $\mathbf{9 0 \%}$ confidence intervals (in inches) ${ }^{\mathbf{1}}$										
Duration	Average recurrence interval (years)									
	1	2	5	10	25	50	100	200	500	1000
5-min	0.109 $(0.098-0.122)$	0.133 $(0.120-0.149)$	$\begin{gathered} \mathbf{0 . 1 6 8} \\ (0.151-0.189) \\ \hline \end{gathered}$	0.199 $(0.176-0.226)$	$\begin{gathered} \mathbf{0 . 2 4 5} \\ (0.206-0.294) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 2 8 4} \\ (0.232-0.352) \end{gathered}$	$\begin{gathered} \mathbf{0 . 3 2 8} \\ (0.258-0.421) \end{gathered}$	$\begin{gathered} \mathbf{0 . 3 7 7} \\ (0.284-0.504) \\ \hline \end{gathered}$	$\mathbf{0 . 4 5 0}$ $(0.320-0.639)$	$\begin{gathered} 0.514 \\ (0.348-0.766) \end{gathered}$
10-min	$\begin{gathered} \mathbf{0 . 1 5 6} \\ (0.141-0.174) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 1 9 1} \\ (0.172-0.214) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 2 4 0} \\ (0.216-0.271) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 2 8 5} \\ (0.252-0.325) \\ \hline \end{gathered}$	0.351 $(0.296-0.421)$	0.407 $(0.332-0.504)$	$\begin{gathered} \mathbf{0 . 4 7 0} \\ (0.370-0.603) \end{gathered}$	0.540 $(0.408-0.722)$	$\begin{gathered} \mathbf{0 . 6 4 5} \\ (0.459-0.916) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.736 \\ (0.498-1.10) \\ \hline \end{gathered}$
15-mi	0.189 $(0.170-0.211)$	0.230 $(0.208-0.258)$	0.291 $(0.261-0.327)$	$\mathbf{0 . 3 4 4}$ $(0.305-0.393)$	$\mathbf{0 . 4 2 5}$ $(0.358-0.509)$	0.493 $(0.402-0.610)$	0.568 $(0.447-0.729)$	$\mathbf{0 . 6 5 3}$ $(0.493-0.873)$	0.780 $(0.555-1.11)$	0.890 $(0.603-1.33)$
30-min	$\begin{gathered} \mathbf{0 . 2 6 2} \\ (0.237-0.294) \\ \hline \end{gathered}$	$\mathbf{0 . 3 2 1}$ $(0.289-0.359)$	0.404 $(0.363-0.455)$	0.479 $(0.425-0.546)$	0.591 $(0.497-0.708)$	0.685 $(0.559-0.848)$	$\begin{gathered} 0.790 \\ (0.622-1.01) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{0 . 9 0 8} \\ (0.686-1.22) \\ \hline \end{array}$	$\begin{gathered} 1.09 \\ (0.772-1.54) \\ \hline \end{gathered}$	$\begin{gathered} 1.24 \\ (0.839-1.85) \\ \hline \end{gathered}$
60-min	0.356 $(0.322-0.399)$	$\mathbf{0 . 4 3 6}$ $(0.393-0.488)$	0.549 $(0.493-0.618)$	$\mathbf{0 . 6 5 1}$ $(0.577-0.742)$	$\mathbf{0 . 8 0 2}$ $(0.676-0.962)$	$\begin{gathered} 0.931 \\ (0.760-1.15) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \hline 1.07 \\ (0.845-1.38) \\ \hline \end{array}$	$\begin{gathered} \hline 1.23 \\ (0.932-1.65) \\ \hline \end{gathered}$	$\begin{gathered} 1.47 \\ (1.05-2.09) \\ \hline \end{gathered}$	$\begin{gathered} 1.68 \\ (1.14-2.51) \\ \hline \end{gathered}$
2-hr	$\mathbf{0 . 5 1 9}$ $(0.468-0.580)$	$\mathbf{0 . 6 2 1}$ $(0.560-0.696)$	$\mathbf{0 . 7 6 8}$ $(0.689-0.864)$	0.898 $(0.796-1.02)$	$\begin{gathered} 1.09 \\ (0.920-1.31) \end{gathered}$	$\begin{gathered} \hline 1.25 \\ (1.02-1.55) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 1.44 \\ (1.13-1.84) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 1.64 \\ (1.24-2.19) \\ \hline \end{gathered}$	$\begin{gathered} 1.94 \\ (1.38-2.75) \\ \hline \end{gathered}$	$\begin{gathered} 2.19 \\ (1.49-3.27) \end{gathered}$
3-hr	0.649 $(0.586-0.726)$	$\mathbf{0 . 7 7 2}$ $(0.696-0.865)$	$\begin{gathered} 0.947 \\ (0.850-1.07) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 1.10 \\ (0.977-1.26) \\ \hline \end{gathered}$	$\begin{gathered} 1.33 \\ (1.12-1.60) \\ \hline \end{gathered}$	$\begin{gathered} 1.52 \\ (1.24-1.89) \end{gathered}$	$\begin{gathered} 1.74 \\ (1.37-2.23) \\ \hline \end{gathered}$	$\begin{gathered} 1.97 \\ (1.49-2.63) \\ \hline \end{gathered}$	$\begin{gathered} 2.32 \\ (1.65-3.29) \end{gathered}$	$\begin{gathered} 2.62 \\ (1.77-3.90) \end{gathered}$
6-hr	$\begin{array}{c\|} \hline \mathbf{0 . 9 4 0} \\ (0.848-1.05) \\ \hline \end{array}$	$\begin{gathered} 1.11 \\ (1.00-1.25) \end{gathered}$	$\begin{gathered} 1.36 \\ (1.22-1.53) \\ \hline \end{gathered}$	$\begin{gathered} 1.57 \\ (1.39-1.79) \\ \hline \end{gathered}$	$\begin{gathered} 1.88 \\ (1.59-2.26) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 1 4} \\ (1.75-2.65) \\ \hline \end{gathered}$	$\begin{gathered} 2.42 \\ (1.91-3.11) \\ \hline \end{gathered}$	$\begin{gathered} 2.73 \\ (2.06-3.65) \\ \hline \end{gathered}$	$\begin{gathered} 3.18 \\ (2.26-4.52) \\ \hline \end{gathered}$	$\begin{gathered} 3.56 \\ (2.41-5.32) \\ \hline \end{gathered}$
12-hr	$\begin{gathered} 1.29 \\ (1.16-1.44) \\ \hline \end{gathered}$	$\begin{gathered} 1.56 \\ (1.41-1.75) \\ \hline \end{gathered}$	$\begin{gathered} 1.93 \\ (1.73-2.17) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 2 4} \\ (1.99-2.56) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 6 9} \\ (2.26-3.22) \\ \hline \end{gathered}$	$\begin{gathered} 3.04 \\ (2.48-3.77) \\ \hline \end{gathered}$	$\begin{gathered} 3.42 \\ (2.69-4.39) \\ \hline \end{gathered}$	$\begin{gathered} 3.82 \\ (2.89-5.11) \\ \hline \end{gathered}$	$\begin{gathered} 4.39 \\ (3.12-6.24) \\ \hline \end{gathered}$	$\begin{gathered} 4.85 \\ (3.29-7.24) \\ \hline \end{gathered}$
24-h	$\begin{gathered} 1.78 \\ (1.63-1.99) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.23 \\ (2.03-2.49) \end{gathered}$	$\begin{gathered} \hline 2.82 \\ (2.57-3.17) \end{gathered}$	$\begin{gathered} \hline \hline 3.31 \\ (2.99-3.74) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 3.98 \\ (3.46-4.66) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 4.50 \\ (3.83-5.39) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline \mathbf{5 . 0 3} \\ (4.17-6.19) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 5.58 \\ (4.49-7.08) \\ \hline \end{gathered}$	$\begin{gathered} 6.35 \\ (4.88-8.42) \end{gathered}$	6.95 $(5.16-9.56)$
2-day	$\begin{gathered} \hline 2.32 \\ (2.12-2.59) \\ \hline \end{gathered}$	$\begin{gathered} 2.94 \\ (2.68-3.29) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.74 \\ (3.40-4.19) \end{gathered}$	$\begin{gathered} \hline 4.39 \\ (3.96-4.97) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.27 \\ (4.59-6.18) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.94 \\ (5.06-7.13) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.63 \\ (5.49-8.16) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.33 \\ (5.90-9.30) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.28 \\ (6.37-11.0) \\ \hline \end{gathered}$	$\begin{gathered} 9.02 \\ (6.69-12.4) \end{gathered}$
3-day	$\begin{gathered} 2.72 \\ (2.48-3.03) \\ \hline \end{gathered}$	$\begin{gathered} 3.46 \\ (3.16-3.87) \\ \hline \end{gathered}$	$\begin{gathered} 4.42 \\ (4.02-4.95) \\ \hline \end{gathered}$	$\begin{gathered} 5.19 \\ (4.68-5.87) \\ \hline \end{gathered}$	$\begin{gathered} 6.22 \\ (5.42-7.30) \\ \hline \end{gathered}$	$\begin{gathered} 7.01 \\ (5.97-8.41) \\ \hline \end{gathered}$	$\begin{gathered} 7.80 \\ (6.47-9.61) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{8 . 6 1} \\ (6.93-10.9) \\ \hline \end{gathered}$	$\begin{gathered} 9.70 \\ (7.46-12.9) \\ \hline \end{gathered}$	$\begin{gathered} 10.5 \\ (7.81-14.5) \\ \hline \end{gathered}$
4-day	$\begin{gathered} 3.01 \\ (2.75-3.36) \\ \hline \end{gathered}$	$\begin{gathered} 3.85 \\ (3.51-4.31) \\ \hline \end{gathered}$	$\begin{gathered} 4.93 \\ (4.48-5.52) \\ \hline \end{gathered}$	$\begin{gathered} 5.79 \\ (5.22-6.54) \\ \hline \end{gathered}$	$\begin{gathered} 6.93 \\ (6.03-8.13) \\ \hline \end{gathered}$	$\begin{gathered} 7.79 \\ (6.63-9.35) \\ \hline \end{gathered}$	$\begin{gathered} 8.66 \\ (7.18-10.7) \\ \hline \end{gathered}$	$\begin{gathered} 9.53 \\ (7.67-12.1) \\ \hline \end{gathered}$	$\begin{gathered} 10.7 \\ (8.23-14.2) \\ \hline \end{gathered}$	$\begin{gathered} 11.6 \\ (8.60-15.9) \end{gathered}$
7-day	$\begin{gathered} \hline 3.70 \\ (3.38-4.13) \\ \hline \end{gathered}$	$\begin{gathered} 4.76 \\ (4.34-5.32) \\ \hline \end{gathered}$	$\begin{gathered} 6.09 \\ (5.54-6.83) \end{gathered}$	$\begin{gathered} 7.14 \\ (6.44-8.07) \end{gathered}$	$\begin{gathered} 8.50 \\ (7.40-9.97) \end{gathered}$	$\begin{gathered} 9.52 \\ (8.10-11.4) \\ \hline \end{gathered}$	$\begin{gathered} 10.5 \\ (8.71-12.9) \\ \hline \end{gathered}$	$\begin{gathered} 11.5 \\ (9.26-14.6) \\ \hline \end{gathered}$	$\begin{gathered} 12.8 \\ (9.86-17.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 13.8 \\ (10.2-19.0) \\ \hline \end{gathered}$
10-day	$\begin{gathered} 4.19 \\ (3.83-4.67) \end{gathered}$	$\begin{gathered} \hline 5.39 \\ (4.92-6.03) \\ \hline \end{gathered}$	$\begin{gathered} 6.90 \\ (6.27-7.73) \end{gathered}$	$\begin{gathered} \hline 8.06 \\ (7.27-9.12) \\ \hline \end{gathered}$	$\begin{gathered} 9.58 \\ (8.33-11.2) \\ \hline \end{gathered}$	$\begin{gathered} 10.7 \\ (9.09-12.8) \\ \hline \end{gathered}$	$\begin{gathered} 11.8 \\ (9.75-14.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 12.8 \\ (10.3-16.3) \\ \hline \end{gathered}$	$\begin{gathered} \hline 14.2 \\ (10.9-18.9) \\ \hline \end{gathered}$	$\begin{gathered} 15.3 \\ (11.3-21.0) \end{gathered}$
20-day	$\begin{gathered} 5.52 \\ (5.05-6.17) \end{gathered}$	$\begin{gathered} \hline 7.11 \\ (6.49-7.96) \\ \hline \end{gathered}$	$\begin{gathered} 9.07 \\ (8.26-10.2) \end{gathered}$	$\begin{gathered} 10.6 \\ (9.54-12.0) \end{gathered}$	$\begin{gathered} 12.5 \\ (10.9-14.7) \\ \hline \end{gathered}$	$\begin{gathered} 13.9 \\ (11.8-16.7) \\ \hline \end{gathered}$	$\begin{gathered} 15.2 \\ (12.6-18.8) \end{gathered}$	$\begin{gathered} \hline 16.6 \\ (13.3-21.0) \\ \hline \end{gathered}$	$\begin{gathered} 18.2 \\ (14.0-24.2) \\ \hline \end{gathered}$	$\begin{gathered} 19.5 \\ (14.5-26.8) \end{gathered}$
30-day	$\begin{gathered} 6.67 \\ (6.10-7.45) \\ \hline \end{gathered}$	$\begin{gathered} 8.56 \\ (7.81-9.57) \\ \hline \end{gathered}$	$\begin{gathered} 10.9 \\ (9.89-12.2) \\ \hline \end{gathered}$	$\begin{gathered} 12.6 \\ (11.4-14.3) \\ \hline \end{gathered}$	$\begin{gathered} 14.9 \\ (13.0-17.5) \end{gathered}$	$\begin{gathered} 16.5 \\ (14.0-19.8) \\ \hline \end{gathered}$	$\begin{gathered} 18.1 \\ (15.0-22.2) \\ \hline \end{gathered}$	$\begin{gathered} 19.6 \\ (15.8-24.8) \\ \hline \end{gathered}$	$\begin{gathered} 21.5 \\ (16.6-28.5) \\ \hline \end{gathered}$	$\begin{gathered} 22.9 \\ (17.0-31.5) \\ \hline \end{gathered}$
45-day	$\begin{gathered} \hline 8.22 \\ (7.51-9.18) \\ \hline \end{gathered}$	$\begin{gathered} 10.4 \\ (9.53-11.7) \end{gathered}$	$\begin{gathered} 13.2 \\ (12.0-14.7) \end{gathered}$	$\begin{gathered} 15.2 \\ (13.7-17.2) \end{gathered}$	$\begin{gathered} 17.9 \\ (15.5-20.9) \\ \hline \end{gathered}$	$\begin{gathered} 19.7 \\ (16.8-23.7) \\ \hline \end{gathered}$	$\begin{gathered} \hline 21.6 \\ (17.9-26.5) \end{gathered}$	$\begin{gathered} 23.3 \\ (18.8-29.6) \end{gathered}$	$\begin{gathered} 25.5 \\ (19.7-33.9) \end{gathered}$	$\begin{gathered} 27.1 \\ (20.1-37.3) \end{gathered}$
60-day	$\begin{gathered} \hline 9.84 \\ (8.99-11.0) \end{gathered}$	$\begin{gathered} \hline 12.4 \\ (11.3-13.8) \end{gathered}$	$\begin{gathered} \hline 15.4 \\ (14.1-17.3) \end{gathered}$	$\begin{gathered} 17.8 \\ (16.1-20.1) \end{gathered}$	$\begin{gathered} \hline 20.8 \\ (18.1-24.4) \end{gathered}$	$\begin{gathered} 22.9 \\ (19.5-27.5) \end{gathered}$	$\begin{gathered} 25.0 \\ (20.7-30.8) \end{gathered}$	$\begin{gathered} 27.0 \\ (21.7-34.2) \end{gathered}$	$\begin{gathered} \hline 29.5 \\ (22.7-39.1) \end{gathered}$	$\begin{gathered} \hline 31.3 \\ (23.2-43.1) \end{gathered}$

1 Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS)
Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values
Please refer to NOAA Atlas 14 document for more information.

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 38.8379°, Longitude: -121.3490°

Average recurrence interval (years)
-1
-2
-5
-10
-25
-50
-100
-200
-500
-1000

Duration		
	5-min 10-min 15-min $30-\mathrm{min}$ $60-\mathrm{min}$ 2-hr 3-hr 6-hr 12-hr 24-hr	$\begin{aligned} & \text { - 2-day } \\ & \text { - 3-day } \\ & \text { - 4-day } \\ & \text { - } 7 \text {-day } \\ & \text { — } 0 \text {-day } \\ & \text { - 20-day } \\ & \text { — } 30 \text {-day } \\ & \text { - } 60 \text {-day } \end{aligned}$

Maps \& aerials

Large scale terrain

Back to Top

US Department of Commerce
 National Oceanic and Atmospheric Administration
 National Weather Service
 National Water Center
 1325 East West Highway
 Silver Spring, MD 20910

Questions?: HDSC.Questions@noaa.gov
Disclaimer

| Type | | Name (Slides) | Name Detail (Poster) |
| :--- | :--- | :--- | :---: | Acres | Critical Element | C\&D | Construction \& Demolition | 18.063408 |
| :--- | :--- | :--- | :--- |
| Critical Element | Composting | Composting Operations | 48.571575 |
| Critical Element | Landfill | Landfill Operations | 15.690817 |
| Critical Element | Public | Public Tip/HHW/Buyback/Reuse | 14.976759 |

c=	$\mathrm{i}=$ (in inches)	$\mathrm{V}=$ (required)	V= (calculated)	A (true) $=$	A (plan) $=$	$\mathbf{L}_{1} \quad \mathbf{W}_{1} \mathbf{H}_{1} \mathbf{S}$				L_{2}	W_{2}
0.95	5.03	313327	313875	71320	70500	300	235	5	3	270	205
0.95	5.03	842520	843500	182650	181300	490	370	5	3	460	340
0.95	6.95	376063	377352	73460	72450	345	210	6	3	309	174
0.95	5.03	259786	262848	72670	72000	300	240	4	3	276	216

infiltration from NOAA Atlas 14, Volume 6, Version 2
100-year, 24-hour intensity for all facilities but landfill
1000-yr, 24-hour intensity for landfill (Class II)

A (plan) used for clearing and grubbing
A (true) used for liner material estimate

Appendix 4A-1
Design Documentation Landfill Construction

Approach for landfill site life calculation

Completed: October 14, 2018

1. Reviewed projections and sources:
a. Method 1 (Golder Waste Projections): Robust analysis of different factors that could impact waste generation and disposal, and curve fitting for different waste streams through the 2060 planning period. Intent of analysis for sizing different elements at the facility in the master plan. For landfill life purposes, Golder used this base and applied a 1\% growth in disposal per year after 2060.
b. Method 2 (Jacobs methodology): Designed to capture impacts of projected doubling of population in waste shed between now and 2050. Applied annual growth rate of approximately 2.12% through 2050 to effectively double the disposal stream by the year 2050. Assumed build out is reached by 2050 and applied a 1% per year growth rate after that.
c. Potential Structural Fill Needs along \mathbf{N} edge of modules 7 and 11: Reviewed impact on simplified design estimate of soil wedge along northern edge of the existing landfill reconfigured, due to loss of module 8 and change in edge of relined module 11. Resulted in less than 1 year of capacity difference in current disposal tonnage basis, so was deemed negligible in overall landfill life estimates for this purpose.
2. Compared Results:
a. Method 1 Site Life Calculations from Golder waste projections, Updated August 2018:
i. Plan Concept $0=$ not calculated as concept is
ii. Plan Concept $1=109$ years, estimate assumes filling to 325 foot elevation, not the permitted 295' elevation
iii. Plan Concept $2=119$ years
b. Method 2 Site Life Calculations (range due to utilization rate variation of 0.65 to 0.72)
i. Plan Concept $0=31$ to 34 years
ii. Plan Concept $1=90$ to 96 years, uses 295 foot elevation in existing area
iii. Plan Concept $2=72$ to 77 years
3. Recommendation
a. Each methodology had a different purpose. They give us a range.
b. There are many unknowns about how the site will be used.
c. We recommend using the lowest number from the methodologies, rounded to the nearest whole number in increments of 5 . Example based on DRAFT above.
i. Plan Concept $0=30$ years
ii. Plan Concept $1=90$ years
iii. Plan Concept $2=70$ years

TABLE
PLAN CONCEPT 0 COST ESTIMATE WESTERN REGIONAL SANITARY LANDFILL NEW LANDFILL

	Item	Quantity	Unit	Unit Cost		Total	
1	Design and Permitting	3	ea	\$	100,000	\$	300,000
2	Mobilization/Demobilization	3	ea	\$	100,000	\$	300,000
3	Layout of Work and Surveys	3	ea	\$	30,000	\$	90,000
4	Clearing and Grubbing	36	ac	\$	1,500	\$	54,000
5	Excavation	3,564,545	cy	\$	3.00	\$	10,693,636
6	Overexcavation of Unsuitable Subgrade Material	60,000	cy	\$	10.00	\$	600,000
7	Earthfill	60,000	cy	\$	4.00	\$	240,000
8	Subgrade Preparation	2,350,973	sf	\$	0.15	\$	352,646
9	Geosynthetic Clay Liner	2,350,973	sf	\$	0.80	\$	1,880,778
10	60-mil HDPE Double Sided Textured Geomembrane	2,138,727	sf	\$	0.75	\$	1,604,045
11	60-mil White Single Sided Textured HDPE Geomembrane	2,350,973	sf	\$	0.75	\$	1,763,230
12	Geocomposite	2,138,727	sf	\$	0.80	\$	1,710,982
13	8oz/sy Nonwoven Geotextile	2,138,727	sf	\$	0.20	\$	427,745
14	Anchor Trenches	2,488	If	\$	13.00	\$	32,350
15	Drainage Layer	79,212	cy	\$	38.00	\$	3,010,061
16	Sump Gravel	525	cy	\$	82.00	\$	43,050
17	Base Operations Layer	79,212	cy	\$	5.60	\$	443,588
18	Side Slope Operations Layer	7,963	cy	\$	6.50	\$	51,760
19	6-inch Diameter SDR 11 HDPE LCRS Pipe	8,100	If	\$	20.00	\$	162,000
20	18-inch Diameter SDR 11 HDPE LCRS Pipe	1,800	If	\$	112.50	\$	202,500
21	6-inch Diameter SDR 11 HDPE Pipe (Force Main)	5,000	If	\$	20.00	\$	100,000
22	Rip Rap	3	Is	\$	30,000	\$	90,000
23	Leak Detection Survey	3	Is	\$	17,000	\$	51,000
24	Revegetation	30	ac	\$	1,500	\$	45,000
25	Stromwater Basin Design	0	ea	\$	50,000	\$	-
26	Stormwater Basin Excavation	0	cy	\$	2.50	\$	-
27	Stormwater Basin Inlet/Outlet Controls	0	Is	\$	50,000	\$	-
28	Perimeter Road	150,000	sf	\$	2.50	\$	375,000
29	Aggregate Base	4,479	cy	\$	35.00	\$	156,774
30	V-Ditch	7,656		\$	5.00	\$	38,282
31	CMP Culverts	498	If	\$	75.00	\$	37,327
32	Stormwater Controls	3	ea	\$	2,500	\$	7,500
33	Stormwater Pollution Prevention Plan Preparation	3	ea	\$	7,800	\$	23,400
34	Stromwater Pollution Prevention Plan Implementation	3	ea	\$	15,000	\$	45,000
					Total	\$	24,931,655

TABLE 9.2
ALTERNATIVE 3 COST ESTIMATE WESTERN REGIONAL SANITARY LANDFILL MONITORING SYSTEMS

	Item	Quantity	Unit	Unit Cost		Total	
1	Monitoring System Design Services	1	Is	\$	100,000	\$	100,000
2	Groundwater Wells	3	ea	\$	10,000	\$	30,000
3	LFG Design Services and Permitting	1	Is	\$	400,000	\$	400,000
4	LFG Extraction Wells	54	ea	\$	2,500	\$	135,000
5	LFG 6-in LFG Collector	5,400	If	\$	20.00	\$	108,000
6	LFG 18-in LFG Header Line	3,925	If	\$	110	\$	431,786
7	LFG Well Heads	54	ea	\$	250	\$	13,500
8	Flare System	1	Is	\$	2,000,000	\$	2,000,000
9	Condensate Sumps	3	ea	\$	500	\$	1,500
10	2-in SDR 9 HDPE Condensate Piping	5,400	If	\$	20.00	\$	108,000
11	2-in SDR 9 HDPE Pneumatic Piping	5,400	If	\$	20.00	\$	108,000
12	LFG Perimeter Monitoring Probes	5	ea	\$	6,000.00	\$	29,862
13	Decomission \& Replace Suction Lysimeters	0	Is	\$	20,000	\$	-
					Total	\$	3,465,648

TABLE 1.1
ALTERNATIVE 1a COST ESTIMATE WESTERN REGIONAL SANITARY LANDFILL

FILL OVER UNLINED TO 325' ELEV

	Item	Quantity	Unit	Unit Cost		Total	
1	Design and Permitting	10	ea	\$	100,000	\$	1,000,000
2	Mobilization/Demobilization	10	ea	\$	100,000	\$	1,000,000
3	Layout of Work and Surveys	10	ea	\$	25,000	\$	250,000
4	Clearing and Grubbing	257	ac	\$	1,500	\$	385,500
5	Excavation	8,328,071	cy	\$	3.00	\$	24,984,213
6	Overexcavation of Unsuitable Subgrade Material	200,000	cy	\$	10.00	\$	2,000,000
7	Earthfill	200,000	cy	\$	4.00	\$	800,000
8	Subgrade Preparation	11,159,400	sf	\$	0.15	\$	1,673,910
9	Geosynthetic Clay Liner	11,159,400	sf	\$	0.80	\$	8,927,520
10	60-mil HDPE Double Sided Textured Geomembrane	9,477,161	sf	\$	0.75	\$	7,107,871
11	60-mil White Single Sided Textured HDPE Geomembrane	11,159,400	sf	\$	0.75	\$	8,369,550
12	Geocomposite	9,477,161	sf	\$	0.80	\$	7,581,729
13	8oz/sy Nonwoven Geotextile	9,477,161	sf	\$	0.20	\$	1,895,432
14	Anchor Trenches	10,000	If	\$	13.00	\$	130,000
15	Drainage Layer	351,006	cy	\$	38.00	\$	13,338,227
16	Sump Gravel	1,750	cy	\$	82.00	\$	143,500
17	Base Operations Layer	351,006	cy	\$	5.60	\$	1,965,633
18	Side Slope Operations Layer	63,000	cy	\$	6.50	\$	409,500
19	6-inch Diameter SDR 11 HDPE LCRS Pipe	27,000	If	\$	20.00	\$	540,000
20	18-inch Diameter SDR 11 HDPE LCRS Pipe	6,000	If	\$	112.50	\$	675,000
21	6-inch Diameter SDR 11 HDPE Pipe (Force Main)	16,000	If	\$	20.00	\$	320,000
22	Rip Rap	10	Is	\$	30,000	\$	300,000
23	Leak Detection Survey	10	Is	\$	17,000	\$	170,000
24	Revegetation	100	ac	\$	1,500	\$	150,000
25	Stromwater Basin Design	2	ea	\$	50,000	\$	100,000
26	Stormwater Basin Excavation	1,092,000	cy	\$	2.50	\$	2,730,000
27	Stormwater Basin Inlet/Outlet Controls	1	Is	\$	50,000	\$	50,000
28	Perimeter Road	480,000	sf	\$	2.50	\$	1,200,000
29	Aggregate Base	18,000	cy	\$	35.00	\$	630,000
30	V-Ditch	32,867	If	\$	5.00	\$	164,335
31	CMP Culverts	2,000	If	\$	76.00	\$	152,000
32	Stormwater Controls	10	ea	\$	2,500	\$	25,000
33	Stormwater Pollution Prevention Plan Preparation	10	ea	\$	7,800	\$	78,000
34	Stromwater Pollution Prevention Plan Implementation	10	ea	\$	15,000	\$	150,000
					Total	\$	89,396,920

TABLE 1.2
ALTERNATIVE 1a COST ESTIMATE WESTERN REGIONAL SANITARY LANDFILL MONITORING SYSTEMS

	Item	Quantity	Unit	Unit Cost		Total	
1	Monitoring System Design Services	1	Is	\$	100,000	\$	100,000
2	Decomission \& Replace Groundwater Wells	7	ea	\$	20,000	\$	140,000
3	Additional Groundwater Wells	2	ea	\$	10,000	\$	20,000
4	Decomission \& Replace LFG Perimeter Probes	5	ea	\$	10,000	\$	50,000
5	LFG Design Services and Permitting	1	Is	\$	400,000	\$	400,000
6	LFG Extraction Wells	321	ea	\$	2,500	\$	802,500
7	LFG 6-in LFG Collector	32,100	If	\$	20.00	\$	642,000
8	LFG 18-in LFG Header Line	16,000	If	\$	110	\$	1,760,000
9	LFG Well Heads	321	ea	\$	250	\$	80,250
10	Flare System	1	Is	\$	2,000,000	\$	2,000,000
11	Condensate Sumps	10	ea	\$	500	\$	5,000
12	2-in SDR 9 HDPE Condensate Piping	32,100	If	\$	20.00	\$	642,000
13	2-in SDR 9 HDPE Pneumatic Piping	32,100	If	\$	20.00	\$	642,000
14	LFG Perimeter Monitoring Probes	8	ea	\$	6,000.00	\$	48,000
15	Decomission \& Replace Suction Lysimeters	1	Is	\$	20,000	\$	20,000
					Total	\$	7,351,750

TABLE

ALTERNATIVE 3 COST ESTIMATE

 WESTERN REGIONAL SANITARY LANDFILL NEW LANDFILL| | Item | Quantity | Unit | Unit Cost | | Total | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Design and Permitting | 13 | ea | \$ | 100,000 | \$ | 1,300,000 |
| 2 | Mobilization/Demobilization | 13 | ea | \$ | 100,000 | \$ | 1,300,000 |
| 3 | Layout of Work and Surveys | 13 | ea | \$ | 30,000 | \$ | 390,000 |
| 4 | Clearing and Grubbing | 253 | ac | \$ | 1,500 | \$ | 379,500 |
| 5 | Excavation | 17888737 | cy | \$ | 3.00 | \$ | 53,666,211 |
| 6 | Overexcavation of Unsuitable Subgrade Material | 260000 | cy | \$ | 10.00 | \$ | 2,600,000 |
| 7 | Earthfill | 360000 | cy | \$ | 4.00 | \$ | 1,440,000 |
| 8 | Subgrade Preparation | 11798401 | sf | \$ | 0.15 | \$ | 1,769,760 |
| 9 | Geosynthetic Clay Liner | 11798401 | sf | \$ | 0.80 | \$ | 9,438,721 |
| 10 | 60-mil HDPE Double Sided Textured Geomembrane | 10733242 | sf | \$ | 0.75 | \$ | 8,049,932 |
| 11 | 60-mil White Single Sided Textured HDPE Geomembrane | 11798401 | sf | \$ | 0.75 | \$ | 8,848,801 |
| 12 | Geocomposite | 10733242 | sf | \$ | 0.80 | \$ | 8,586,594 |
| 13 | 8oz/sy Nonwoven Geotextile | 10733242 | sf | \$ | 0.20 | \$ | 2,146,648 |
| 14 | Anchor Trenches | 12488 | If | \$ | 13.00 | \$ | 162,350 |
| 15 | Drainage Layer | 397527 | cy | \$ | 38.00 | \$ | 15,106,045 |
| 16 | Sump Gravel | 2275 | cy | \$ | 82.00 | \$ | 186,550 |
| 17 | Base Operations Layer | 397527 | cy | \$ | 5.60 | \$ | 2,226,154 |
| 18 | Side Slope Operations Layer | 39963 | cy | \$ | 6.50 | \$ | 259,760 |
| 19 | 6-inch Diameter SDR 11 HDPE LCRS Pipe | 35100 | If | \$ | 20.00 | \$ | 702,000 |
| 20 | 18-inch Diameter SDR 11 HDPE LCRS Pipe | 7800 | If | \$ | 112.50 | \$ | 877,500 |
| 21 | 6-inch Diameter SDR 11 HDPE Pipe (Force Main) | 20774 | If | \$ | 20.00 | \$ | 415,480 |
| 22 | Rip Rap | 13 | Is | \$ | 30,000 | \$ | 390,000 |
| 23 | Leak Detection Survey | 13 | Is | \$ | 17,000 | \$ | 221,000 |
| 24 | Revegetation | 130 | ac | \$ | 1,500 | \$ | 195,000 |
| 25 | Stromwater Basin Design | 0 | ea | \$ | 50,000 | \$ | - |
| 26 | Stormwater Basin Excavation | 0 | cy | \$ | 2.50 | \$ | - |
| 27 | Stormwater Basin Inlet/Outlet Controls | 0 | Is | \$ | 50,000 | \$ | - |
| 28 | Perimeter Road | 623220 | sf | \$ | 2.50 | \$ | 1,558,050 |
| 29 | Aggregate Base | 22479 | cy | \$ | 35.00 | \$ | 786,774 |
| 30 | V-Ditch | 38423 | If | \$ | 5.00 | \$ | 192,117 |
| 31 | CMP Culverts | 2498 | If | \$ | 75.00 | \$ | 187,327 |
| 32 | Stormwater Controls | 13 | ea | \$ | 2,500 | \$ | 32,500 |
| 33 | Stormwater Pollution Prevention Plan Preparation | 13 | ea | \$ | 7,800 | \$ | 101,400 |
| 34 | Stromwater Pollution Prevention Plan Implementation | 13 | ea | \$ | 15,000 | \$ | 195,000 |
| | | | | | Total | \$ | 123,711,174 |

TABLE 9.2
ALTERNATIVE 3 COST ESTIMATE WESTERN REGIONAL SANITARY LANDFILL MONITORING SYSTEMS

	Item	Quantity	Unit		nit Cost		Total
1	Monitoring System Design Services	2	Is	\$	100,000	\$	200,000
2	Groundwater Wells	13	ea	\$	10,000	\$	130,000
3	LFG Design Services and Permitting	2	Is	\$	400,000	\$	800,000
4	LFG Extraction Wells	271	ea	\$	2,500	\$	677,500
5	LFG 6-in LFG Collector	27,100	If	\$	20.00	\$	542,000
6	LFG 18-in LFG Header Line	19,699	If	\$	110	\$	2,166,926
7	LFG Well Heads	271	ea	\$	250	\$	67,750
8	Flare System	2	Is	\$	2,000,000	\$	4,000,000
9	Condensate Sumps	13	ea	\$	500	\$	6,500
10	2-in SDR 9 HDPE Condensate Piping	27,100	If	\$	20.00	\$	542,000
11	2-in SDR 9 HDPE Pneumatic Piping	27,100	If	\$	20.00	\$	542,000
12	LFG Perimeter Monitoring Probes	25	ea	\$	6,000.00	\$	149,862
13	Decomission \& Replace Suction Lysimeters	0	Is	\$	20,000	\$	-
Total							\$ 9,824,538

Appendix 4A-1
Design Documentation
Landfill Stockpile Relocation

From:	Keith Schmidt <KSchmidt@ placer.ca.gov>
Sent:	Monday, October 15, 2018 11:35 AM
To:	Goodrich, Janet/SAC
Cc:	Eric Oddo; McRae, Jennifer/SJC; Lopez, Lyndsey/PDX
Subject:	[EXTERNAL] RE: Your input needed asap on a few items - high priority items

Janet,
Based on our discussion, here are those answers:

1. As of $6 / 30 / 2017$, there are $\mathbf{1 . 4}$ MCY of soil stockpiled on Modules 6-8, nearly all of it on 6-7, compared to the pre-development grades of 1978.
2. Okay, soil moving will be a project cost.
3. Correct, the "top of fill" grades I use are based on the Master Fill Plan (2003, SCS) grades included in Nortech Landfill's contract and are the top of the Intermediate Cover (ie. with NO final cover installed) except for Modules 1, 2, 10 and 11 which were at final grade and closed when SCS made their fill plans.
Keith J. Schmidt, P.E. | Senior Civil Engineer | Western Placer Waste Management Authority | (Mail) 11476 "C" Ave. Auburn, CA 95603 | (Physical) 3033 Fiddyment Rd. Roseville, CA 95747 | (916) 543-3986 (Direct) | (916) 543-3990 (Fax)

From: Goodrich, Janet/SAC [mailto:Janet.Goodrich@jacobs.com]
Sent: Monday, October 15, 2018 9:14 AM
To: Eric Oddo; Keith Schmidt
Cc: Lopez, Lyndsey/PDX; McRae, Jennifer/SJC
Subject: Your input needed asap on a few items - high priority items

1. Did Keith get a chance to calculate the amount of soil that would need to be moved for all options (soil stockpile on modules 6 and 7 ?)?
2. We plan to put the soil moving cost into capital, not O\&M. Our thinking is that is driven by capital projects.
3. For Keith's calculations on air space, we are assuming (and I think we discussed this with him), that the air space he lists of 24.5 M CY is available for landfill waste and interm cover, and is AFTER the air space needed for final cover is removed. In other words, we assume the 24.5 M CY is based on waste/interim cover final grades and not final cover final grades. (see below)

Per our June 2017 flyover, we had $24,468,271$ (say 24.5 MCY) of airspace remaining. Here is likely how that would change with Option 3:

24.5	MCY	$24,500,000.00$	CY	Remaining Central Landfill Capacity as of $6 / 30 / 2017$ survey
-7.4	MCY	$(7,400,000.00)$	CY	Less Mods 8 and 9
4.2	MCY	$4,200,000.00$	CY	Module 11 Line, Re-permit, Fill Completely Like Mod 7
-1.4	MCY	$(1,400,000.00)$	CY	Less waste already in place in Mod 11
-2.2	MCY	$(2,200,000.00)$	CY	Per Golder's 3.6 MCY of waste in place module $1,2,10$ and $11(3.6-1.4=)$
17.7	MCY	$17,700,000.00 \mathrm{CY}$	Remaining Central Landfill Capacity, Best Case Scenario	

NOTICE - This communication may contain confidential and privileged information that is for the sole use of the intended recipient. Any viewing, copying or distribution of, or reliance on this message by unintended recipients is strictly prohibited. If you have received this message in error, please notify us immediately by replying to the message and deleting it from your computer.

Appendix 4A-1

Design Documentation
 Landfill Closure

TABLE
PLAN CONCEPT 0 (MAX) COST ESTIMATE WESTERN REGIONAL SANITARY LANDFILL CLOSURE CONSTRUCTION COSTS

Notes:

TABLE 2
alternative 1a Cost estimate WESTERN REGIONAL SANITARY LANDFILL CLOSURE CONSTRUCTION COSTS

	Item	Quantity	Unit	Unit Cost	Total
1	Mobilization/Demobilization	9	Is	$\$$	$75,000.00$

Notes:

1. Downdrains assumed every 1000 feet.

TABLE
PLAN CONCEPT 2 (MAX) COST ESTIMATE WESTERN REGIONAL SANITARY LANDFILL CLOSURE CONSTRUCTION COSTS

	Item	Quantity	Unit		nit Cost		Total
1	Mobilization/Demobilization	7	Is	\$	75,000.00	\$	525,000
2	Vegetative Layer	743456	cy	\$	4.70	\$	3,494,244
3	Geocomposite	20029930	sf	\$	0.70	\$	14,020,951
4	60-mil HDPE DST Geomembrane	20029930	sf	\$	0.66	\$	13,219,754
5	Geosynthetic Clay Liner	20029930	sf	\$	0.78	\$	15,623,345
6	2-foot Foundation Layer	1485230	cy	\$	4.70	\$	6,980,583
7	Anchor Trenches	5046	If	\$	13.00	\$	65,599
8	Bench V-Ditches	51751	If	\$	10.00	\$	517,509
9	Top Deck Berms	18502	If	\$	10.00	\$	185,023
10	CMP Downdrains	10933	If	\$	50.00	\$	546,659
11	Drain Inlets	76	ea	\$	100.00	\$	7,569
12	Revegetation	365	ac	\$	1,500.00	\$	547,500
13	Stormwater Controls	2	ea	\$	2,500.00	\$	5,000
14	Stormwater Pollution Prevention Plan Preparation	2	ea	\$	7,800.00	\$	15,600
15	Stromwater Pollution Prevention Plan Implementation	2	ea	\$	15,000.00	\$	30,000
Total						\$ 55,784,337	

Notes:

Appendix 4A-1
Design Documentation Unlined Area Waste Relocation

TABLE 9.3
ALTERNATIVE 3 COST ESTIMATE WESTERN REGIONAL SANITARY LANDFILL UNLINED UNIT

	Item	Quantity	Unit		nit Cost		Total
1	Design and Permitting	4	ea	\$	100,000	\$	400,000
2	Mobilization/Demobilization	5	ea	\$	15,000	\$	75,000
3	Layout of Work and Surveys	5	ea	\$	30,000	\$	150,000
4	Remove Waste in Unlined Unit	3,646,000	cy	\$	11.50	\$	41,929,000
5	Subgrade Preparation	0	sf	\$	0.15	\$	-
6	Geosynthetic Clay Liner	0	sf	\$	0.80	\$	-
7	60-mil HDPE Double Sided Textured Geomembrane	0	sf	\$	0.75	\$	-
8	60-mil White Single Sided Textured HDPE Geomembrane	0	sf	\$	0.75	\$	-
9	Geocomposite	0	sf	\$	0.80	\$	-
10	8oz/sy Nonwoven Geotextile	0	sf	\$	0.20	\$	-
11	Anchor Trenches	0	If	\$	13.00	\$	-
12	Drainage Layer	0	cy	\$	38.00	\$	-
13	Base Operations Layer	0	cy	\$	5.60	\$	-
14	Side Slope Operations Layer	0	cy	\$	6.50	\$	-
15	6-inch Diameter SDR 11 HDPE LCRS Pipe	0	If	\$	20.00	\$	-
16	Rip Rap	0	Is	\$	30,000	\$	-
17	Leak Detection Survey	0	Is	\$	17,000	\$	-
18	Revegetation	0	ac	\$	1,500	\$	-
19	CMP Culverts	200	If	\$	75.00	\$	15,000
20	Stormwater Controls	4	ea	\$	2,500.00	\$	10,000
21	Stormwater Pollution Prevention Plan Preparation	4	ea	\$	7,800.00	\$	31,200
22	Stromwater Pollution Prevention Plan Implementation	4	ea	\$	15,000.00	\$	60,000
Total						\$	42,670,200

TABLE 1.3
ALTERNATIVE 1a COST ESTIMATE

WESTERN REGIONAL SANITARY LANDFILL

 UNLINED UNIT| | Item | Quantity | Unit | | nit Cost | | Total |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Design and Permitting | 4 | ea | \$ | 100,000 | \$ | 400,000 |
| 2 | Mobilization/Demobilization | 5 | ea | \$ | 15,000 | \$ | 75,000 |
| 3 | Layout of Work and Surveys | 5 | ea | \$ | 30,000 | \$ | 150,000 |
| 4 | Remove Waste in Unlined Unit | 3,646,000 | cy | \$ | 15.00 | \$ | 54,690,000 |
| 5 | Subgrade Preparation | 2,793,936 | sf | \$ | 0.15 | \$ | 419,090 |
| 6 | Geosynthetic Clay Liner | 2,793,936 | sf | \$ | 0.80 | \$ | 2,235,149 |
| 7 | 60-mil HDPE Double Sided Textured Geomembrane | 2,593,618 | sf | \$ | 0.75 | \$ | 1,945,214 |
| 8 | 60-mil White Single Sided Textured HDPE Geomembrane | 2,793,936 | sf | \$ | 0.75 | \$ | 2,095,452 |
| 9 | Geocomposite | 2,593,618 | sf | \$ | 0.80 | \$ | 2,074,894 |
| 10 | 8oz/sy Nonwoven Geotextile | 2,593,618 | sf | \$ | 0.20 | \$ | 518,724 |
| 11 | Anchor Trenches | 2,200 | If | \$ | 13.00 | \$ | 28,600 |
| 12 | Drainage Layer | 96,060 | cy | \$ | 38.00 | \$ | 3,650,277 |
| 13 | Base Operations Layer | 96,060 | cy | \$ | 5.60 | \$ | 537,936 |
| 14 | Side Slope Operations Layer | 8,309 | cy | \$ | 6.50 | \$ | 54,012 |
| 15 | 6-inch Diameter SDR 11 HDPE LCRS Pipe | 10,800 | If | \$ | 20.00 | \$ | 216,000 |
| 16 | Rip Rap | 4 | Is | \$ | 30,000 | \$ | 120,000 |
| 17 | Leak Detection Survey | 4 | Is | \$ | 17,000 | \$ | 68,000 |
| 18 | Revegetation | 20 | ac | \$ | 1,500 | \$ | 30,000 |
| 19 | CMP Culverts | 200 | If | \$ | 75.00 | \$ | 15,000 |
| 20 | Stormwater Controls | 4 | ea | \$ | 2,500.00 | \$ | 10,000 |
| 21 | Stormwater Pollution Prevention Plan Preparation | 4 | ea | \$ | 7,800.00 | \$ | 31,200 |
| 22 | Stromwater Pollution Prevention Plan Implementation | 4 | ea | \$ | 15,000.00 | \$ | 60,000 |
| Total | | | | | | \$ | 69,424,547 |

TABLE 1.4
ALTERNATIVE 1a COST ESTIMATE WESTERN REGIONAL SANITARY LANDFILL LCRS EXTENSION

	Item	Quantity	Unit		nit Cost		Total
1	Design	1	Is	\$	100,000	\$	100,000
2	Mobilization/Demobilization	3	Is	\$	15,000	\$	45,000
3	Layout of Work and Surveys	3	Is	\$	30,000	\$	90,000
4	Waste Excavation	443,000	cy	\$	15.00	\$	6,645,000
5	Extend LCRS System	3	ea	\$	30,000	\$	90,000
6	Remove and Dispose of Side Slope Liner	136,000	sf	\$	0.20	\$	27,200
7	Stormwater Controls	3	ea	\$	4,000	\$	12,000
8	Stormwater Pollution Prevention Plan Preparation	3	ea	\$	7,800.00	\$	23,400
9	Stromwater Pollution Prevention Plan Implementation	3	ea	\$	15,000.00	\$	45,000
Total						\$	7,077,600

TABLE 9.3
ALTERNATIVE 3 COST ESTIMATE WESTERN REGIONAL SANITARY LANDFILL UNLINED UNIT

Backup for the basis of the cost per cy used in the cost estimate for excavation and relocation of the unlined cells

$\$$	15.00	Golder Initial rough estimate, no backup, all in cost
$\$$	8.37	Golder bottoms up estimate, may not include some items (i.e. haul roads), may underestimate complexities, may be optimistic for productivity, includes re-landfilling
$\$$	7.86	Presidio project, actual costs, did not include permitting, engineering, CM, includes refilling directly adjacent but simple.
$\$$	7.36	CPEN estimate, does not include permitting, CM, engineering, does not include re-landfilling
$\$$	15.00	Used for Key West estimate, does not include redisposal, based on site specific factors, cost for equipment and location is higher
$\$ \mathbf{\$ - \$ 2 2}$		Range used by Jacobs for LandREC tool, variable with site conditions, all in cost (except for any long hauling)
$\$$	10.00	Compromise Reasonable Estimate by J. Goodrich and S. Wright using this input dated 10/16/18
$\$$	11.50	Plus 15% for permitting, engineering, SDCs.

Pre-Subtitle D Area Waste Relocation Workplan
 Western Placer Waste Management Authority

Submitted to:

Jacobs

2485 Natomas Park Drive Suite 600
Sacramento, California 95833

Submitted by:
Golder Associates Inc.
1000 Enterprise Way, Suite 190
Roseville, California, USA 95678
+1 916 786-2424

1649494

September 2018
Table of Contents
1.0 INTRODUCTION 1
1.1 Background 1
1.2 Waste Relocation Requirements 2
2.0 SITE CHARACTERIZATION 2
2.1 Site Description 3
2.2 Existing Site Conditions 3
2.2.1 Geology 3
2.2.2 Hydrology 4
2.2.3 Soil Conditions 4
2.2.4 Waste Characterization 5
2.2.5 Existing Monitoring and Waste Migration Findings 5
3.0 EXCAVATION AND MATERIAL MANAGEMENT 6
3.1 Excavation Plan 8
3.2 Materials Management Plan 9
3.3 Transport and Disposal of Excavated Materials 11
3.4 Health and Safety Issues and Control Procedures 11
3.4.1 Environmental Hazards 11
3.4.1.1 Water Quality 11
3.4.1.2 Air Quality 12
3.4.1.3 Odor Control 13
3.4.1.4 Accidental Fire Control. 13
3.4.2 Hazards to Personnel 13
4.0 CONFIRMATION OF WASTE RELOCATION 14
4.1 Waste Relocation Monitoring Parameters 15
4.2 Post Excavation Sampling Procedures and Results Analysis 15
4.3 Reporting 16
5.0 COST ESTIMATE 16
6.0 REFERENCES 19

TABLES

Table 1 - Waste Relocation Cost Estimate

FIGURES

Figure 1 - Site Plan
Figure 2 - Alternative 1A
Figure 3 - Alternative 2A
Figure 4 - Alternative 3

APPENDICES

Appendix A - Waste Relocation Cost Estimate Detail

1.0 INTRODUCTION

The Western Placer Waste Management Authority (WPWMA) owns the WPWMA Solid Waste Facility (Figure 1). WPWMA is a joint powers organization with members from Placer County, and the cities of Lincoln, Roseville, and Rocklin.

Solid waste management activities at the facility include a public drop-off area, materials recovery facility, construction and demolition debris processing facility, composting facility, and landfill. The facility is located on approximately 320 acres of land owned by WPWMA. WPWMA also owns approximately 465 acres to the west of the facility site and approximately 178 acres to the east of the facility site. The eastern property is immediately adjacent to the facility site.

In recognition of the projected growth of the WPWMA's service area, recent laws requiring increased waste diversion, and constraints related to the size of WPWMA's existing facilities, the WPWMA is considering expanding its facilities. To support its decision making, the WPWMA has initiated a master planning process to evaluate facility requirements and how to best accommodate those requirements on the WPWMA's existing property.

Conceptual alternatives that have been developed include expanding the existing landfill, modifying the site entrance and public unloading drop-off area, expanding the composting area, and expanding the construction and demolition processing area. An existing Pre-Title D waste disposal area constrains aspects of the conceptual alternatives. As a result, WPWMA is considering relocating the waste from the Pre-Subtitle D area to allow development of a lined landfill expansion area and/or to allow development of other solid waste facilities on earthfill that would be placed after the waste was relocated.

Golder Associates Inc. (Golder) has prepared this workplan to inform decision makers about the potential issues related to relocating waste and to provide an order of magnitude cost for relocating the waste.

1.1 Background

The WPWMA's existing landfill, Western Regional Sanitary Landfill (WRSL), is part of the WPWMA Solid Waste Facility. The permitted area of the landfill is 291 acres with 231 acres permitted for disposal activities. A current site plan is shown in Figure 1.

The site was originally permitted for waste disposal activities in 1979. In 1992, the landfill was divided into 16 modules for waste fill placement. Modules $1,2,10$ and 11 predate Subtitle D and generally do not have composite liner systems. (A portion of Module 11 has a composite liner. However, throughout this workplan, Modules 1, 2, 10 , and 11 will be described as unlined.)

- Modules 1 and 2 were constructed as waste disposal units lined with compacted on-site soils and have been closed with a final cover system consisting of various soil components. Modules 1 and 2 were closed in 1998.
- Modules 10 and 11 were constructed with a compacted clay liner. The southwestern end of Module 11 incorporated a geomembrane liner above the compacted clay liner. Modules 10 and 11 were closed with a final cover constructed in the summer of 1999. The western half of Module 10 and all of Module 11 includes a leachate collection system.

WPWMA is considering relocating the waste in the Pre-Subtitle D modules in order to potentially develop lined waste disposal modules or other solid waste facilities consistent with the adopted master plan. Relocating the
existing waste will require removing the existing final cover, excavating the existing waste, placing it in existing composite lined modules and removing any contaminated soil and groundwater from beneath the Pre-Subtitle D area. This workplan has been developed to describe these activities.

The WPWMA is currently evaluating three possible alternatives for the Pre-Subtitle D area as part of the master planning process. Each of these alternatives as it relates to the Pre-Subtitle D area is described below.

- Alternative 1A: This alternative involves developing the Pre-Subtitle D area as new lined waste disposal modules conforming to current landfill liner requirements. Alternative 1A is shown in Figure 2.
- Alternative 2A: This alternative involves developing the approximately southern half of the Pre-Subtitle D area as new lined disposal modules conforming to current landfill liner requirements. Earthfill would be placed in the approximately northern half of the Pre-Subtitle D area to the approximate existing ground level. The area would be developed as a new public drop-off area and corporation yard. Figure 3 shows Alternative 2A.
- Alternative 3: This alternative involves developing the approximately southern quarter of the Pre-Subtitle D area as a new lined disposal module conforming to current landfill liner requirements. Earthfill would be placed in the approximately northern three-quarters of the Pre-Subtitle D area to the approximate existing ground level. The area would be developed for composting, C\&D processing, new public drop-off area, and biogas fueling facility. Area would also be available for development of pilot-scale projects. Alternative 3 is shown in Figure 4.

1.2 Waste Relocation Requirements

This workplan has been developed following the requirements cited in Title 27 of the California Code of Regulations Sections 21090 (f) (27 CCR $\S 21090$ (f)) and 23 CCR $\S 21810$. Golder also used the CalRecycle guidelines provided in Local Enforcement Agency (LEA) Advisory \#16 (dated September 26, 1994). Although the proposed waste relocation is not clean closure as envisioned by the regulations and LEA Advisory \#16, they provide a basis for the evaluation of the proposed waste relocation.

As required by these regulations and guidance, this workplan provides the following information:

- Site Characterization - Section 2.0
- Excavation and Material Management Plans - Section 3.0
- Confirmation of Waste Relocation - Section 4.0
- Cost Opinion - Section 5.0

2.0 SITE CHARACTERIZATION

To demonstrate the suitability of the Pre-Subtitle D area for waste relocation, this workplan includes a site characterization. The characterization provides information for evaluating the nature and extent of waste and the extent of any known residual soil impacts owing to waste migration. This site characterization consists of:

- A site description, including the site location, a legal description, and site development information.
- A discussion of existing site conditions, including the regional and site geology and hydrogeology, the extent and character of waste, results from existing monitoring data, and conclusions regarding waste migration.

2.1 Site Description

The WRSL facility is on approximately 320 acres of land owned by the WPWMA off Highway 65 between Roseville and Lincoln, California. The permitted area of the landfill is 291 acres, with 231 acres permitted for disposal activities.

The WRSL site is not located within the estimated boundaries for the 100-year flood event based on the Flood Insurance Rate Map (FIRM) prepared by the Federal Emergency Management Agency (FEMA, 1998). The distance to the nearest 100-year floodplain is approximately 0.5 mile to the southwest of the landfill property.

2.2 Existing Site Conditions

The following sections summarize important considerations and findings regarding the site geology and hydrogeology, the extent and character of waste, the existing monitoring program, and waste migration information. The geology and hydrogeology of the site has been previously characterized by Lawrence \& Associates (1995) and were described in the SEIR (EDAW, 2000). The following paragraphs summarize the subsurface conditions and are based primarily on information presented in those reports, supplemented by published reports on local and regional geology.

2.2.1 Geology

The landfill property is located in the southeastern portion of the Sacramento Valley, west of the Sierra Nevada foothills. Basement rocks in the area consist of plutonic and metamorphic rocks of the Sierra Nevada batholith and associated metamorphic complexes. These basement units are exposed in the foothills approximately 5 miles east of the site. Overlying the batholith in the valley is an eastward-thinning sequence of marine sedimentary rocks of Upper Cretaceous age, unconformably overlain by Tertiary and Quaternary sedimentary deposits. Formations located in the vicinity of the landfill (EDAW, 2000; Lawrence \& Associates, 1995; Helley and Harwood, 1985) include a Miocene through Holocene sequence of alluvial deposits derived from Tertiary volcanic rocks and the Sierra Nevada batholith. The Tertiary and Quaternary sedimentary units are exposed near the site and underlie the landfill.

Geologic units at the immediate site vicinity include the following from youngest to oldest:

- Holocene age alluvium deposits found in Pleasant Grove Creek and Orchard Creek to the south and north of the landfill, respectively. The alluvium consists of unweathered gravel, sand, and silt. Holocene-age basin deposits are derived from the same sources as the alluvium but consist of fine-grained silt and clay.
- Pleistocene age Riverbank Formation consists of unconsolidated to semi-consolidated gravel, sand, and silt, with minor clay, and is red to dark brown in color. Riverbank Formation outcrops generally are topographically higher than the Holocene alluvial deposits. The formation is exposed along the sides of the present Orchard Creek drainage approximately $1 / 2$ mile northeast of the landfill property.
- Pleistocene age Turlock Lake Formation in the southern and eastern parts of the Sacramento Valley consists of stream-laid alluvial deposits of arkosic gravel, sand, silt, and clay. The formation stands topographically higher than the Riverbank and modern alluvial plains and is highly dissected by stream erosion. The Turlock Lake Formation underlies most of the gently rolling hills near the landfill, and represents eroded alluvial fans derived from the Sierra Nevada.
- Pliocene age Laguna Formation consists of interbedded alluvial gravel, sands, and silts and generally is lithologically indistinguishable from the Turlock Lake Formation. Geologic maps from the early 1960's show much of the Turlock Lake Formation as Laguna Formation (Lawrence \& Associates, 1995). The distinction between the two formations is primarily based on soil development at the ground surface.
- Miocene-Pliocene age Mehrten Formation are volcanic deposits derived from the Sierra Nevada. The Mehrten Formation, exposed in the hills approximately 2 miles to the east of the landfill, is comprised of cemented boulder to cobble conglomerate, sandstone, siltstone, and tuff breccia of andesitic material. The tuff breccia is hard, and forms ridge tops east of the site. The similar ages of the volcanic and alluvial deposits suggest that there may be some interfingering of the two deposits (Lawrence \& Associates, 1995).

These geologic units are relatively flat-lying alluvial sediments. The younger sedimentary units are often similar in lithology, and the subsurface contacts between the units are not well defined.

2.2.2 Hydrology

Surface water from the site drains to the north to Orchard Creek and to the south to Pleasant Grove Creek. Both streams eventually flow into the Sacramento River. Stormwater is the only surface water at the site.

Groundwater occurs at a depth of 70 to 110 feet within the alluvial sediments that underlie the site. Groundwater has been observed within the overlying unsaturated zone in what has been referred to as temporary or transient perched zones. This water is considered to result from the downward migration of infiltrating water. The water may accumulate on lower permeability layers and form temporary perched zones (EMCON 1988). The average hydraulic conductivity for site wells MW-13, MW-19, and MW-21 is $2.47 \times 10^{-3} \mathrm{~cm} / \mathrm{sec}$ (Holdredge \& Kull, 1997a). The groundwater flow direction is primarily to the southwest. The height of capillary rise beneath the site has been estimated using published relationships between grain size and capillary rise (Todd, 1980, Bouwer, 1978). Golder has estimated the capillary rise above the water table to be 3.5 feet.

2.2.3 Soil Conditions

The subsurface stratigraphy of the site has been explored in a number of different exploration programs. The relevant exploration programs consist of:

- Geomechanics, Inc., 1977
- EMCON Associates, 1979
- Lawrence \& Associates, 1995, 1996
- Holdrege \& Kull, 1997
- Golder, 2001

Most of these boring were advanced to depths between 25 and 40 feet below ground surface (bgs). Two of the Geomechanics' borings were advanced to 109 and 125 feet, respectively. The Golder borings were advanced to depths ranging from 86.5 to 101.5 feet, bgs.

In general, the subsurface stratigraphy varies over the area of the site, resulting in a wide variety of sand, silt, and clay mixtures typical of the historic gently graded riverbed system. Orange and dark gray staining indicates wet and dry cycles typical of seasonal high and low water levels.

Typically, the first 5 to 10 feet of materials encountered are compacted sandy gravel or silty sand with gravel fill associated with road construction. Below the compacted fill, a hard sandy silt/clay was evident in most borings. This hard fine-grained soil layer was intermixed with poorly graded sand lenses ranging from a thickness of less than 1 inch to about 20 feet. Some borings encountered low-plasticity clay layers that averaged about 5 feet thick.

Soils at the site are generally moderately to highly expansive, with areas of low-expansive soils (EDAW, 2000a). Near-surface soils in the area of the landfill gas blower/flare station were characterized as slightly to moderately expansive (Lawrence \& Associates, 1995).

The soil materials at the site are generally hard to dense, providing an excellent foundation for the landfill development. Uncorrected standard penetration test blow count data from the Golder study averaged 70 blows per foot in the fine-grained soils and 52 blows per foot in the course- grained soils. Laboratory unconfined compressive strength data for the fine-grained soils averaged over 4,800 pounds per square foot (psf). Mohr-coulomb effective strength parameters from consolidated undrained triaxial shear test results average effective friction angle, Φ^{\prime}, equal to 36 degrees and effective cohesion, c', equal to 65 psf. The corresponding total stress parameters are Φ equal to 25 degrees and c equal to 605 psf. Consolidation test data for the fine-grained material resulted in an average compression index, C_{c}, value of 0.09 .

2.2.4 Waste Characterization

Based on the base grading drawings prepared by Lawrence and Associates (1995) and the 2016 aerial topography prepared by American Aerial Mapping, Inc., the estimated total volume of the Pre-Subtitle D landfill area is estimated to be approximately $3,646,000$ cubic yards (cy). The waste is assumed to be comprised of Class III nonhazardous solid waste. It is generally assumed the landfill waste can be classified as general wastes, and include mixed municipal wastes, construction and demolition debris, yard wastes and rubbish, and inert materials such as concrete and white goods.

2.2.5 Existing Monitoring and Waste Migration Findings

Modules 1, 2, and 10 are reported not to have a leachate collection and removal system (LCRS) above the compacted on-site soils. Modules 2 and 10 have leachate sumps and a side slope riser pipes to access the sumps. Module 11 has a leachate collection and removal system that includes a leachate sump.

Degradation of site groundwater quality was first observed in fourth quarter 1995 in monitoring well MW-9, located just west of Module 2, which was subsequently closed in 1998. Groundwater monitored by well MW-9 contains several volatile organic compounds (VOCs). A comparison of VOCs detected in landfill gas samples from site landfill gas probe GM-14 with the VOCs detected in groundwater in well MW-9 indicates that landfill gas may be responsible for the VOCs detected in well MW-9 groundwater (Lawrence \& Associates, 1995b). In addition, analyses of general water quality parameters in well MW-9 indicate that there may be a leachate influence on the quality of groundwater. Lawrence \& Associates (1995b) have shown that the effects of leachate on groundwater are limited to a small area around well MW-9. The Corrective Action Program and its addendum (Holdrege \& Kull, 1997b, 1997c) identify the installation of final cover and the extraction of landfill gas as the initial corrective actions to be implemented. Sampling corrective action monitoring wells MW $9, \mathrm{MW}-10$, and $\mathrm{MW}-11$ on a quarterly basis monitors the effectiveness of this program.

Fluctuations in concentrations of VOCs, calcium, magnesium, and bicarbonate alkalinity, all of which can be affected by LFG, have been observed in the samples from the corrective action program wells. The changes in concentrations of these parameters suggest that the influence of LFG on groundwater quality has varied over time.

3.0 EXCAVATION AND MATERIAL MANAGEMENT

In accordance with Section 21090 (f) of 27 CCR, waste relocation of a landfill is complete when:

- All waste materials, contaminated components of the containment system, and affected or polluted geologic materials (soils, rock, groundwater) beneath or surrounding the Unit, and caused by a release from the Unit, are either removed and discharged to an appropriate Unit or are treated to the extent that the RWQCB finds that they no longer pose a threat to water quality.
- All remaining containment features are inspected for contamination, and if contaminated, discharged in accordance with subsection 21090 (f) of 27 CCR.

The Pre-Subtitle D area is an unlined landfill with no containment systems other than the underlying soils and the surface cover soils. In addition, as discussed previously, and based on available analytical data, there is no known significant impact to underlying soils or groundwater resulting from this area. Consequently, waste relocation activities at the Pre-Subtitle D area will be directed toward excavation, management, and disposal of waste materials at one or more approved facilities depending on their character, and excavation, management and disposal or treatment of any affected soils beneath or surrounding the waste materials pose a threat to water quality as determined by the RWQCB, these materials will be managed and treated or disposed of as appropriate.

Waste relocation activities at the Pre-Subtitle D area will include excavation of existing final cover soils, waste (including daily and interim cover), and as appropriate, any underlying soils affected by a release from the landfill and posing a threat to water quality or the environment. Golder estimates that excavation may include approximately $3,646,000$ cy of material (final cover soils, Class III nonhazardous solid wastes, and daily and interim soil cover) as described in Section 2.2.3. We have assumed over-excavation will average 2 feet below the base of waste throughout the Pre-Subtitle D area footprint.

The Excavation and Materials Management Plans designate waste materials for excavation, proper management, and disposal according to waste classification and applicable laws and regulations. Soils will be excavated and properly managed and reused onsite based on their characteristics and any associated threat to water quality. The goal of excavation and materials management is the removal of all waste materials and any surrounding soils so affected by contact with waste or a release from the landfill that they would otherwise pose a threat to water quality or the environment, and thereby clean close the Pre-Subtitle D area. Soils not affected by waste will be excavated, stockpiled, and reused on site.

The waste relocation will include the following activities:

- Contractor mobilization.
- Final cover removal and stockpiling.
- Excavation, materials management, and transportation and disposal of waste materials.
- Excavation and stockpiling of clean cover and berm soils.
- Confirmation sampling and analysis by a California certified laboratory of the exposed subgrade in the excavation area and stockpiled soils.
- Placement of daily cover or alternative daily cover (ADC) at the end of each working day over all exposed solid waste surfaces to control vectors, fires, odors, blowing litter, and scavenging. Daily cover shall consist
of no less than 6 inches of compacted earthen material (from approved on-site sources) or approved ADC. All daily cover must meet the performance standards of the California Code of Regulations (CCRs) Title 27, Sections 20695and Sections 21570 through 21686.
- Placement of intermediate cover consisting of at least 12 inches and no more than 18 inches of compacted earthen material shall be placed on all surfaces of exposed solid waste where no additional waste excavation or waste relocation work will occur within 180 days to control vectors, fires, odors, blowing litter, and scavenging. Intermediate cover does not consist of any of the acceptable alternative daily materials listed in Section 20690 of the CCRs, Title 27.
- Site winterization and interim grading to control stormwater run-on and infiltration into the remaining waste.
- Finish grading of the site and construction of any temporary storm water control measures.
- Seeding of disturbed areas to reduce erosion.
- Site cleanup and contractor demobilization.

The waste relocation activities will be monitored and documented by a full-time resident engineer from the WPWMA or their designee. Selected by the WPWMA, the contractor, with certain restrictions, will be responsible for conducting waste relocation activities in general conformance with this workplan and the Module 1, 2, 10 and 11 waste relocation Plans and Specifications, and in strict conformance with applicable laws, permits, and regulations.

The contractor's responsibilities will include, but not necessarily be limited to:

- Obtaining all required permits for the waste relocation excluding the notice of intent (NOI), which the WPWMA will submit prior to the start of the waste relocation activities.
- Preparing and being in compliance with a project-specific Health and Safety Plan (HASP).
- Preparing and implementing an excavation plan. The Placer County Division of Environmental Health is the Local Enforcement Agency (LEA) and will require that the contractor provide twenty-four (24) hour notice to the LEA prior to implementation of the excavation plan.
- Providing an estimate and demonstrating compliance with daily and cumulative air pollution emissions for their planned equipment utilization established for the project based on the air pollution control rules, regulations, ordinances, and statutes maintained by the Placer County Air Pollution Control District (PCAPCD).
- Preparing and implementing a Materials Management Plan (MMP) identifying the methods used to excavate, store, load, and transport the materials for the waste relocation to a designated disposal area on site. The contractor also is required to submit as part of the MMP a contingency plan in the event that non-conforming wastes or hazardous wastes or impacted soils are encountered during the excavation. The MMP will identify methods to segregate and manage wastes based on their classification (conforming or non-conforming or hazardous) and impacted soils from clean soils in the event impacted soils are encountered. The MMP will identify measures to minimize erosion from or ponding on stockpiles especially temporary soil stockpiles. The MMP will specify methods to identify, classify, store, transport, and dispose or otherwise manage all encountered wastes in accordance with all applicable Federal, State, and local laws and requirements.
- Preparing and implementing a Construction Storm Water Management Plan (C-SWPPP), excluding filing of a Notice of Intent (NOI), which the WPWMA will prepare and submit.
- Designating and maintaining soil stockpile areas.
- Maintaining site safety and security.
- Developing and implementing a dust control plan as required by the PCAPCD and any other measures that may be required to mitigate environmental impacts to acceptable levels.
- Excavating, managing, and transporting conforming waste materials to the designated disposal area on site.
- Excavating, stockpiling, and managing soil materials based on their character as determined from observations and analytical testing by others.
- Finish grading in conformance with the excavation plan and the Module 1, 2, 10 and 11 waste relocation Plans and Specifications.

3.1 Excavation Plan

Waste relocation of the Pre-Subtitle D area will require excavation of waste and soil materials from the modules that encompasses approximately 65.8 acres as shown in Figure 1. The contractor will identify on a daily basis the area of excavation and strip the existing surface cover soils that are not impacted by waste. The contractor will stockpile these soils in a designated stockpile area. The contractor will excavate waste materials, including commingled cover soils, and place them into trucks for transport to the designated disposal areas on site. WPWMA will dispose of the waste materials in conformance with site permits and applicable laws and regulations. Excavation will proceed until reaching the base of waste. The excavation will progress laterally across the designated excavation area. Trained personnel provided by the contractor will observe the excavation process to identify any non-conforming waste materials, including hazardous waste as described in Section 3.2. Trained personnel provided by the contractor will also observe the exposed subgrade soils to identify any areas that may be affected by a release from the landfill.

Available geologic information indicates that the Pre-Subtitle D area lies primarily above stream-laid alluvial deposits of arkosic gravel, sand, silt, and clay. In some areas, it is anticipated that excavation will extend into the underlying gravel, sand, silt, and clays. Actual grades and conditions may vary and will be determined at the time of excavation. Anticipated excavation depths range from 10 to 66 feet, based on available information.

During excavation, the contractor will be responsible for excavating to design lines and grades or alternative lines and grades required to remove all waste materials and affected soil materials that may pose a threat to water quality. The contractor also will be responsible for excavating and maintaining stable excavation slopes including interim waste slopes and intermediate (if necessary) and final soil slopes.

The contractor should excavate slopes that conform to the following maximum (horizontal:vertical) inclinations:

- Interim waste slopes should not exceed 3:1
- Interim soil slopes should not exceed 2:1
- Final soil slopes will vary between $2: 1$ and $4: 1$

WPWMA personnel or their designee will observe the contractor's progress during waste relocation activities and provide guidance necessary to assure waste relocation of the site and maintain acceptable excavation lines and grades.

Waste relocation activities will include excavation and stockpiling of almost 428,000 cy of final cover soil that is not anticipated to be significantly affected by waste materials. The contractor will designate and maintain stockpile areas of sufficient size and appropriate location for these soils. The contractor will be responsible for managing these soils and any over-excavation soils in conformance with the drawings and specifications and any applicable permit conditions, regulatory requirements and laws. Section 3.2.

The contractor will cover exposed waste at the end of each work day with a minimum of 6 inches of compacted earthen material or an approved ADC (e.g., tarps) to control vectors, fires, odors, blowing litter, and scavenging. The contractor will place intermediate cover over exposed waste and temporary waste slopes where no additional waste excavation or waste relocation work will occur within 180 days. Intermediate cover will consist of a minimum 1 -foot thick layer of compacted earthen material, including daily cover soil. There are no approved alternative materials for intermediate cover. The intermediate cover will protect otherwise exposed waste, thereby controlling vectors, fires, odors, blowing litter, and scavenging during any potential lapses in waste relocation activities.

To confirm complete removal of the waste and any affected soil materials that may pose a threat to water quality if not removed and properly disposed of or treated, project personnel will observe and document material removal and other waste relocation activities as appropriate. This will include daily field logs of areas excavated, quantities removed, and scale tags from the materials delivered to the active face or other designated facility.

The contractor will provide for positive drainage at the top of all excavation slopes to control storm water run-on into the excavation. The remaining excavation will be graded such that precipitation from the $100-\mathrm{yr}, 24-\mathrm{hr}$ design storm will drain and prevent water from rising above the waste at the toe of the temporary waste slope. This will prevent ponding water from posing a threat for seeping into buried waste and causing a potential for leachate development. WPWMA personnel or their designee also will visit the site after precipitation events that exceed 2 inches of rainfall and coordinate pumping of ponded water if need be. Slopes that will be cut from native soils will be constructed without the intermediate cover.

The overall removal rate and sequencing will be determined by the contractor, with an anticipated timeline of approximately 300 days for the project. Although it is not anticipated that the project scope will change significantly, the volume and duration of excavation is subject to revision based on the contractor's performance and other factors.

Excavated areas to be developed with a Subtitle D composite liner system will be graded at about 1.5% to 3.5% to flow to the northeast corner of the excavation as shown on the drawings. Areas to be developed for other solid waste facilities will receive earthfill to the design grades shown on the drawings. All slopes will be seeded at the conclusion of construction to control erosion. Additional erosion controls such as diversion berms, hay bales, and straw wattles will be used as necessary during construction in accordance with the C-SWPPP. Perimeter slopes will be seeded to reduce erosion.

3.2 Materials Management Plan

The contractor will designate locations for loading, storage, and transport of excavated materials generated during the waste relocation. The contractor will excavate and load waste and over-excavation materials that pose a threat to groundwater quality into haul trucks and transport them to the designated disposal area as described in

Section 3.3. The contractor will store cover and berm soils on site in a designated location for use as daily cover or drainage control or final grading at the end of the project.

Although it is anticipated that primarily MSW will be encountered, there is the potential to encounter hazardous or non-conforming wastes during the waste relocation. Hazardous wastes are defined in Title 22 of the California Code of Regulations (22 CCR) Section 66261.3. Hazardous wastes have the following characteristics:

- Are ignitable, corrosive, reactive, or toxic.
- Have the potential to cause or significantly contribute to an increase in mortality or an increase in serious irreversible or incapacitating reversible illness.
- Have the potential to pose a substantial present or potential hazard to human health or the environment, due to factors including, but not limited to, carcinogenicity, acute toxicity, chronic toxicity, bioaccumulative properties, or persistence in the environment, when improperly treated, stored, transported, or disposed of, or otherwise managed.

Non-conforming wastes include all other waste material that are not accepted at the WRSL, excluding hazardous waste, and include:

- Sludge with less than 15% solids.
- Designated wastes that may be currently not accepted include, but are not limited to, industrial sludges, dredge debris, slab/construction/demolition debris, commercial/industrial waste, and glass cullet.
- Wastes containing soluble pollutants in concentrations that exceed applicable water quality objectives, or that could cause degradation of waters of the state per California Water Code Section 13173.
- Cathode Ray Tubes (CRTs) from televisions and computer monitors.
- Electronic wastes such as televisions, refrigerators, etc.
- Dead animals.

The contractor will be required to develop and implement a contingency plan in case hazardous or non-conforming wastes are encountered during waste relocation. The contingency plan will include:

- An introduction that provides a brief overview of waste relocation operations, a general description of the physical area, a general description of the nature of hazards or events in which the contingency plan is applicable, and a list of emergency planning requirements being addressed in the plan.
- A core plan including discovery, initial response, sustained actions, and termination and follow-up actions.
- Annexes, including facility and locality information, notification, response management systems, incident documentation, training and exercises, response critique, plan review, and modifications process, prevention, and regulatory compliance and cross reference matrices.

The contractor will base the contingency plan on guidelines issued by the State of California Governor's Office of Emergency Services (CA OES, 2001). The contractor will provide personnel that are trained to implement the contingency plan. Training must be done in conformance with all applicable laws.

Hazardous and non-conforming waste will be stored on-site in a designated area following all applicable regulatory laws. Containers that are suspected of containing hazardous materials or non- conforming wastes must be checked by trained personnel for integrity, damage, contents, etc. Testing methods for identifying hazardous waste are provided in 22 CCR Chapter 11.

Disposal and transportation of non-conforming and hazardous wastes require specially permitted transporters and facilities. Therefore, the contractor and WPWMA personnel, cannot perform such activities. A hauler and facility specially permitted for hauling and receiving hazardous wastes will be identified in a contingency plan developed by the contractor.

3.3 Transport and Disposal of Excavated Materials

Excavated materials will be transported to the active face or designated disposal area on site by the contractor. Weight tags will be collected and used for documenting final disposal of all waste materials.

Disposal and transportation of non-conforming and hazardous wastes require specially permitted transporters and facilities. Therefore, the contracted municipal solid waste hauler and the accepting facility, the WRSL, cannot perform such activities. A hauler and facility that are specially permitted for hauling and receiving hazardous wastes will be identified in a contingency plan developed by the contractor.

3.4 Health and Safety Issues and Control Procedures

Waste relocation will include excavation of waste materials that may contain unknown materials including MSW, non-conforming wastes, hazardous waste, leachate, and soils that could pose hazards to the environment or the health and safety of workers or both. Waste relocation projects like the Pre-Subtitle D area waste relocation require health and safety guidelines and a site-specific HASP to reduce the potential hazards associated with waste relocation activities to acceptable levels. This section of the workplan provides general health and safety guidelines and practices that must be addressed in the project-specific HASP that the contractor will be required to develop and implement. This workplan provides general health and safety concerns and preventive actions for environmental and personnel hazards relevant to the clean closure.

3.4.1 Environmental Hazards

Waste relocation activities have the potential to present environmental health hazards that could affect the surrounding community or environment. Such hazards include groundwater and surface water contamination and decreased air quality owing to emissions resulting from waste relocation activities. Implementation of measures to control environmental hazards or improper control of environmental hazards can expose workers to health and safety hazards. This workplan describes these hazards and methods to reduce the threat that they otherwise pose to workers and the public. This workplan also describes environmental controls typically required that are included as part of the waste relocation project.

3.4.1.1 Water Quality

To provide stormwater pollution prevention, the contractor will develop and submit a NOI to comply with the terms of the general permit to discharge stormwater associated with construction activity (WC Order No. 2009-009-DWQ). The NOI will be developed by WPWMA under the State of California's general permit for construction activities. The contractor will submit a stormwater pollution prevention plan (SWPPP) including provisions to manage leachate in the event that it is encountered or generated during the waste relocation of the Pre-Subtitle D area. Leachate may require testing and special management practices to minimize potential impacts to the environment and health hazards to workers. Management practices may include pumping and transportation for disposal at an appropriate
facility selected by the contractor and approved by the WPWMA. Leachate management activities will be conducted by the contractor in accordance with this plan, the Pre-Subtitle D area permits and applicable laws.

3.4.1.2 Air Quality

To control particulate emissions, the contractor will be required to implement measures identified in a dust control plan. These measures will include:

- Pre-water site and phase work to reduce the amount of disturbed surface area at any one time.
- Apply water to dry areas during leveling, grading, trenching, and earthmoving activities.
- Apply water to unpaved haul and access roads.
- Apply water to vehicle traffic and equipment storage areas.
- Apply water to disturbed areas.
- Limit vehicular speed to 15 mph in unpaved areas.
- Apply water and cover with tarp when storing materials.
- Apply water when handling bulk materials sufficient to limit visible dust emissions (VDE) to 20\% opacity.
- Cover bulk materials stored outdoors with tarps, plastic, or other suitable material and anchor to prevent the cover from being removed by wind.
- Clean up carryout and trackout areas at the end of each workday.
- Cover the cargo compartment of loaded and emptied trucks with a tarp or suitable cover before leaving site.
- Prevent spillage or loss of bulk material from holes or other openings in the cargo compartment's floor, sides, and/or tailgate.
- Limit vehicular speed sufficient to limit VDE to 20% opacity, or limit load haul trucks to have greater than 6 " freeboard, or apply water to top of load sufficient to limit VDE to 20% opacity.
- Apply water to disturbed surface area and restrict vehicular access after work hours, on weekends and on holidays.
- Temporarily stabilize disturbed surface areas that remain unused for 7 or more days.
- Apply and maintain water to all un-vegetated areas unused for 7 or more days.
- Maintain records for demonstrating compliance with dust control measures.
- Maintain records for demonstrating compliance for cleanup of carryout and trackout areas.

The contractor will be responsible for the specifics as to how these measures will be implemented.

3.4.1.3 Odor Control

Odor can be an issue for excavation of younger waste (younger than 20 years) during summer time. While generally the odors are controlled by prompt placement of daily and intermediate cover, there are some other methods that can help in mitigating odor problems. Below is a list of the new technologies the WPWMA might implement.

- Odor control sprayers are wheeled tractors with a cab, consisting of a movable spray arm and a mounted reservoir, is used to reduce smell of exposed waste by spraying neutralizing agent, such as RenoSam 2009.
- Atomized misting equipment can suppress dust levels and can be installed in every place of the PreSubtitle D area and the landfill.
- A product, such as RusFoam ADC Soil Equivalent Foam (AC667), may be used to help control odor. RusFoam ADC Soil Equivalent Foam (AC667) is a water-based non-hardening product engineered to provide superior coverage and visual appearance on the working face. The 3 " foam blanket fills any voids on the uneven surface of the waste, eliminating potential odor, lifter or vector problems due to exposed trash.

3.4.1.4 Accidental Fire Control

An emergency plan should be prepared to extinguish fires in the waste. The equipment and method to be used for extinguishing fires should be presented in the plan. Isolation and rapid natural burnout or smothering with soil is preferred for extinguishing fire. The emergency plan should also include procedures for notification of local fire protection agencies for assistance in emergencies.

3.4.2 Hazards to Personnel

The waste relocation activities can present a range of potential physical, chemical, and radiological hazards to which personnel may be exposed. These are due both to the hazards presented by the work location itself and those that may be encountered during the completion of the required scope of work. The potential hazards include, but are not limited to:

Exposure to hydrogen sulfide, sulfur dioxide, vinyl chloride, chlorinated solvents, and methane;

- Lifting or moving heavy buckets or drums.
- Hazardous noise produced during excavation activities.
- Heat stress, and suffocation associated with weather and personal protective clothing.
- Exposure to radioactive sources.
- Hazards involving underground electrical, gas or other utilities, or overhead electrical lines, may be encountered.
- Slips and falls due to unstable surfaces, steep grades uneven terrain and trenches encountered during excavation/backfill activities.
- Energized electrical equipment malfunctions in on-site support equipment and machinery.
- Traffic hazards.

- Confined spaces.

Preventive measures will include general health and safety training, use of personal protective equipment, personnel monitoring, decontamination, and establishment of site control work zones. Emergency response actions and contacts will also be included.

Methods of eliminating or mitigating the identified risks should be developed and published as a part of the comprehensive health and safety program. The contractor's HASP will be specific to measures and equipment that will be used to complete waste relocation activities. A site safety officer will monitor compliance with the safety plan and will also oversee that on-site personnel understand all aspects of the HASP. The contractor also will conduct site monitoring. WPWMA will develop their own HASP for WPWMA personnel. The contractor's HASP and the WPWMA's HASP will be implemented during the waste relocation project. Although the health and safety program largely depends on site specific conditions, waste types, and project goals and can be particularly challenging, a typical health and safety program might call for the following:

- Hazard communication (i.e., a "Right to Know" component) to inform personnel of potential risks.
- Respiratory protection measures, including hazardous material identification and assessment; engineering controls; written standard operating procedures; training in equipment use, respirator selection, and fit testing; proper storage of materials; and periodic reevaluation of safeguards.

The program should also list the equipment to be used by workers. The types of safety equipment used the waste relocation project include:

- Standard safety equipment (e.g., hard hats, steel-toed shoes, safety glasses and/or face shields, protective gloves, and hearing protection).
- Specialized safety equipment (e.g., chemically protective overalls, respiratory protection, and selfcontained breathing apparatus).
- Monitoring equipment (e.g., combustible gas meter, hydrogen sulfide chemical reagent diffusion tube indicator, and oxygen analyzer).

4.0 CONFIRMATION OF WASTE RELOCATION

Specific activities will be performed to confirm removal of waste materials and residuals. These activities will include:

- Observation and documentation of waste and residuals removal.
- Documentation verifying the final disposition of all waste and residual materials.
- Soil sampling.
- Reporting of waste relocation activities and confirmation sampling.
- Developing and implementing a remedial action plan (RAP) or closure and post-closure maintenance plans if waste relocation activities were not successful.

Procedures regarding observation and documentation of waste and residuals removal are presented in Section 3.1. Confirmation sampling procedures, reporting of waste relocation activities and sampling results from a California certified laboratory, and non-compliance actions are discussed below.

4.1 Waste Relocation Monitoring Parameters

Results from the existing monitoring program and past field investigations indicate that there is no known significant migration of waste residuals into groundwater and surface water. Upon waste relocation and completion of waste removal, the potential source of future contamination to groundwater or surface water will be subsurface soils that may have been impacted by waste residuals. Waste relocation activities, therefore, require testing of subsurface soils to assure removal of waste residuals that would pose a threat to water quality, human health, or the environment.

Waste relocation monitoring parameters for soil will include select constituents of concern from the existing site groundwater and surface water monitoring program and other parameters typically found at MSW landfills. Monitoring parameters recommended for the waste relocation activities consist of:

```
- Sulfide (EPA 9030)
- Cyanide (EPA 9010)
- VOCs (EPA Method 8260, extended list)
■ Semi-VOCs (EPA Method 8270)
- CAM - 17 Metals (EPA 6010)
■ Organophosphorus Compounds (EPA 8141)
- Chlorophenoxy Herbicides (EPA 8151)
- PCB's (EPA 8082)
```


4.2 Post Excavation Sampling Procedures and Results Analysis

A qualified person, on behalf of the WPWMA, will inspect the subgrade or evidence of staining or potential areas of impact. Samples will be taken at a frequency of approximately 1 per 500 feet. If visual evidence is observed, an additional sample will be collected from the area of potential impact. Groundwater is not anticipated to be encountered during the sampling.

If used, soil borings will be advanced using a direct-push drill rig equipped with Geoprobe or equivalent sampling rods. Continuous soil cores will be collected in acetate tubes inside the sample barrel. After being advanced four feet, the inner sample barrel will be retrieved while the drive casing is left in place to prevent borehole collapse. After retrieving the inner core barrel, the soil samples will be removed for laboratory chemical analyses. Each boring will be backfilled with bentonite pellets.

Soil samples will be collected for laboratory analysis from each boring at 0-1 feet, 1-2 feet, 2-3 feet, 3-4 feet, and $4-5$ feet. The soil samples collected from Cells will be analyzed in the laboratory for the parameters discussed in Section 4.1. All soil samples will be properly containerized, labeled, and preserved upon collection. Chain-ofcustody documentation will accompany the samples to the laboratory for analysis.

Background concentrations will be used to compare to the samples collected during the waste relocation to determine if the underlying soils have been affected by waste constituents. The laboratory analytical results will be compared with the background concentration limits calculated. The tolerance interval method will be used to calculate concentration limits. This method is used to estimate the concentration a constituent can exhibit and still
be considered consistent with background soil. In other words, tolerance limits represent concentrations beyond which a significant change has occurred.

If a soil sample has constituent concentrations that exceed the concentration limits, then it will be determined that the soil was affected by waste constituents. These data and subsequent evaluations will be used to determine the vertical extent of soils impacted by waste constituents.

If the 0-1 feet soil samples do not show impact from waste constituents, then only the upper foot of soil will be analyzed. If impacts from waste constituents are detected, soil will be excavated to additional depth based on the results of the soil sampling and comparison to background concentration limits.

Confirmation of waste relocation will be considered complete if no composite samples have concentrations exceeding background concentrations.

4.3 Reporting

A technical report will be developed describing the waste relocation activities and verifying that waste relocation has been completed. The report will include a site map, a letter certifying that monitoring parameters are at or below clean up limits as indicated by confirmation testing results, and the final disposition of waste and residual materials.

A registered civil engineer or a certified engineering geologist will prepare the report. The WPWMA will submit the report to the RWQCB, CaIRecycle, and the Placer County Division of Environmental Health (acting as the LEA for the CalRecycle).

5.0 COST ESTIMATE

The engineer's cost opinion for the waste relocation project is approximately $\$ 24,469,135$. The cost includes:

- Unit rates based on prevailing wages, CalTrans equipment rates, and CalTrans rates for labor surcharge and overhead and profit based on force account work.
- The waste and non-hazardous impacted soil will be removed and hauled to the landfill for proper disposal.
- It is assumed that an average of 2-feet of soil will be excavated across the entire footprint to confirm there are no impacts from waste constituents.
- A construction quality assurance officer will be on site for the entire duration of the project.
- Soil testing costs include 15 test pits with samples taken at depths of $2.5-\mathrm{ft}$, and $5-\mathrm{ft}$ spaced at approximately 1 per 500 feet.
- C-SWPPP preparation and implementation.

The estimated cost does not include the following, which are assumed to be included in other elements of the master plan:

- Environmental analysis per CEQA and permitting.
- Liner, leachate collection system, and related costs for portion of the Sub-Title D area to be developed as landfill.
- Earthfill to support solid waste facilities other than landfill.
- Permanent drainage.

The details of the cost estimate for the closure of Module 1, 2, 10, and 11 is included in Appendix G - Closure/Postclosure Cost Detail.

Signature Page

Golder Associates Inc.

Lindsey Angell, PE
Senior Project Engineer

Richard D. Haughey, PE Associate/Practice Leader

LMA/RDH/md

Golder and the G logo are trademarks of Golder Associates Corporation
https://golderassociates.sharepoint.com/sites/10452g/shared documents/4technical work/clean closure workplan/clean closure workplan.docx

6.0 REFERENCES

EDAW, 2000, "Supplemental Draft Environmental Impact Report for the Western Regional Sanitary Landfill," January 24.

EMCON Associates, Inc., 1988, "Report of Disposal Site Information, Western Regional Sanitary Landfill, Placer County, California," October.

Golder Associates, Geotechnical Characterization for the Western Regional Sanitary Landfill JTD, May 2001.
Helley, Edward J. and D. S. Harwood, 1985, "Geologic Map of the Late Cenozoic Deposits of the Sacramento Valley and Northern Sierra Foothills, California," Map MF-1790, United State Geological Survey.

Holdrege and Kull, May 20, 1997a. Proposed Corrective Action Program for Western Regional Sanitary Landfill, SWIS No. 31-AA-0210, Lincoln, California.

Holdrege and Kull, September 23, 1997b. Addendum to Proposed Corrective Action Program.
Holdrege and Kull, November 14, 1997c. Groundwater Monitoring Well Installation Report.
Lawrence \& Associates, 1995a, "Report of Disposal Site Information for the Western Regional Sanitary Landfill, Placer County, California," February 21, Sixth Revision December 18, 1996.

Lawrence \& Associates, 1995a, "Report of Disposal Site Information for the Western Regional Sanitary Landfill, Placer County, California," February 21, Sixth Revision December 18, 1996.

Lawrence \& Associates, 1995b, "Revised Article 5 Monitoring Plan for Western Regional Sanitary Landfill, Placer County, California," May.

State of California Governor's Office of Emergency Services (CAOES), 2001, "Guidelines for Developing a Facility's Consolidated Hazardous Materials and Waste Management Plan (Draft),: November.

Table 1
Waste Relocation Cost Estimate Western Regional Sanitary Landfill

Item	Unit	Unit Cost	Quantity		Total Cost
1. Waste Relocation Work Plan	Is	\$ 56,800	1	\$	56,800
2. Waste Relocation					
a. Final Cover Excavation	cy	\$ 9.30	425,017	\$	3,952,654
b. Waste Excavation	cy	\$ 5.40	3,220,983	\$	17,393,311
c. Soil Liner \& Subgrade Over-Excavation	cy	\$ 3.00	425,016	\$	1,275,048
3. Construction Quality Assurance	Is	\$ 1,427,368	1	\$	1,427,368
4. Soil Testing	Is	\$ 40,791	1	\$	40,791
5. SWPPP Preparation and Implementation					
a. SWPPP Preparation	ea	\$ 8,526	1	\$	8,526
b. SWPPP Implementation	Is	\$ 15,000	1	\$	15,000
			Subtotal	\$	24,169,497
			gency (20\%)	\$	4,833,899
			Total	\$	29,003,397
Waste to be Relocated (CY) ${ }^{2}$	464,0		Cost \$/CY	\$	8.37

Notes:

1. From the General Prevailing Wage determination made by the Director of Industrial Relations pursuant to California Labor Code Part 7, Chapter 1, Article 2, Sections 1770, 1773 and 1773.1. Equipment rental rate from the 2018 CalTrans Labor Surcharge and Equipment Rental Rates.
2. Includes final cover.

APPENDIX A
WASTE RELOCATION COST ESTIMATE DETAIL

1. WASTE RELOCATION WORK PLAN WASTE RELOCATION COST ESTIMATE WESTERN REGIONAL SANITARY LANDFILL

2a. FINAL COVER EXCAVATION WASTE RELOCATION COST ESTIMATE WESTERN REGIONAL SANITARY LANDFILL

Crew Costs:

Position	Personnel	Wage Rate		Units	Qnty	Subtotal	
Survey Crew	2	\$	145.00	/hr	500	\$	145,000
Excavator Operator	4	\$	105.04	/hr	470	\$	197,471
Laborers	10	\$	75.17	/hr	470	\$	353,290
Compactor Operator	6	\$	104.10	/hr	470	\$	293,549
Scraper Operator	2	\$	105.94	/hr	470	\$	99,581
Haul Truck Driver	8	\$	84.93	/hr	470	\$	319,324
Water Truck Operator	2	\$	84.93	/hr	470	\$	79,831
Maintenance Truck Operator	5	\$	98.88	/hr	470	\$	232,357
Foreman	1	\$	94.25	/hr	470	\$	44,298
					Crew	\$	1,764,701

Equipment Costs:

Schedule:

Work Item	Qnty 1	Units	${\text { Production } \text { Rate }^{2}}^{\text {2 }}$		Days
Vegetative Layer (1-ft)	106,254	cy	9,600	cy/day	12
Compacted Clay Layer (1- ft)	106,254	cy	9,600	cy/day	12
Foundation Layer (2-ft)	212,508	cy	9,600	cy/day	23

Notes:

1. Final cover system for Modules $1,2,10$ and 11 consists of $1-\mathrm{ft}$ thick vegetative layer, $1-\mathrm{ft}$ thick compacted clay layer, and 2 - ft thick foundation layer. 2. Soil removal production rate based on 4 CAT 637D scrapers, 8 loads/hr/scraper, $10 \mathrm{hr} / \mathrm{day}$, and $30 \mathrm{cy} / \mathrm{load}$.

2b. WASTE EXCAVATION WASTE RELOCATION COST ESTIMATE WESTERN REGIONAL SANITARY LANDFILL

Crew Costs:

Position	Personnel	Wage Rate		Units	Qnty	Subtotal	
Survey Crew	2	\$	145.00	/hr	500	\$	145,000
Excavator Operator	4	\$	105.94	/hr	2,541	\$	1,076,744
Laborers	10	\$	75.17	/hr	2,541	\$	1,910,019
Compactor Operator	6	\$	104.10	/hr	2,541	\$	1,587,040
Spreading Dozer Operator	2	\$	105.94	/hr	2,541	\$	538,372
Haul Truck Driver	8	\$	84.93	/hr	2,541	\$	1,726,386
Water Truck Operator	2	\$	84.93	/hr	2,541	\$	431,596
Maintenance Truck Operator	5	\$	98.88	/hr	2,541	\$	1,256,213
Foreman	1	\$	94.25	/hr	2,541	\$	239,489
					Crew	\$	8,910,859

Equipment Costs:

TOTAL: \$ 17,519,120
Waste Excavation Unit Cost: \$ 5.44 /cy Rounded Waste Excavation Unit Cost: \$ 5.40 /cy

Schedule:

Work Item	Qnty 2	Units	Production Rate		Days
Refuse Removal	$3,220,983$	cy	14,000	cy/day	231
Project Duration:					231

[^10]
2c. SUBGRADE AND OVEREXCAVATION
 WASTE RELOCATION COST ESTIMATE WESTERN REGIONAL SANITARY LANDFILL

Crew Costs:

Position	Personnel	Wage Rate		Units	Qnty	Subtotal	
Laborer	5	\$	75.17	/hr	460	\$	172,886
Excavator Operator	1	\$	105.94	/hr	460	\$	48,731
Scraper Operator	4	\$	105.94	/hr	460	\$	194,924
Water Truck Operator	1	\$	84.93	/hr	460	\$	39,066
Dump Truck Driver	1	\$	105.94	/hr	230	\$	24,366
Foreman	1	\$	94.25	/hr	460	\$	43,355

Equipment Costs:

Item	No. of Equip.	Rate per Unit	Unit		

Equipment Total: \$ 750,702

TOTAL: \$ 1,274,030
Liner and Soil Layer Unit Cost: \$ 3.00 Rounded Liner and Soil Layer Unit Cost: \$ 3.00 /cy

Schedule:

Work Item	Qnty $^{\mathbf{1}}$	Units	${\text { Production Rate }{ }^{2}}^{\|c\|}$		Days
Subgrade Excavation (2-ft)	212,508	cy	9,600	cy/day	23
Over Excavation (2-ft)	212,508	cy	9,600	cy/day	23

Project Duration:

[^11]
3. CONSTRUCTION QUALITY ASSURANCE (CQA) WASTE RELOCATION COST ESTIMATE WESTERN REGIONAL SANITARY LANDFILL

Labor:

Position	Personnel	Wage Rate		Unit	Qnty	Subtotal	
CQA Officer (8 hrs/wk @ 61 wks)	1	\$	137	/hr	3050	\$	417,850
Staff Engineer (20 hrs/wk @ 61 wks)	1	\$	112	/hr	3050	\$	341,600
Sr. Technician (50 hrs/wk @ 61 wks)	1	\$	110	/hr	3050	\$	335,500
Admin/Clerical (4 hrs/wk @ 61 wks)	1	\$	73	/hr	3050	\$	222,650
Communication Fee - 5\% on Labor	--		5.0\%	Labor fees		\$	65,880
Labor Subtotal:						\$,383,480

CQA Report and Certification:

Position	Personnel	Wage Rate	Unit	Qnty	Subtotal			
Principal	1	$\$$	235	$/ \mathrm{hr}$	24			
CQA Officer	1	$\$$	137	$/ \mathrm{hr}$	40	$	$	(
:---								

4. SOIL TESTING

WASTE RELOCATION COST ESTIMATE WESTERN REGIONAL SANITARY LANDFILL

Professional Services:

Position	Personnel	Wage Rate	Units	Qnty	Subtotal
Geologist	1	$\$$	112	$/ \mathrm{hr}$	80
Sr. Consultant	1	$\$$	186	$/ \mathrm{hr}$	8,960
Office Service Fee		5%	rate	20	$\$$

Equipment:

Item	No. of Equip.	Rate per Unit	Unit	Qnty	Subtotal	
GPS Unit	1	\$ 25	day	5	\$	125
Field Vehicle	1	\$ 125	day	5	\$	625
Per Diem	1	\$ 150	day	5	\$	750
Office Service Fee		10\%	rate		\$	150

Lab Testing Costs - Soil:

Monitoring Parameter	Number	Unit Cost	Units		

WASTE RELOCATION COST ESTIMATE
WESTERN REGIONAL SANITARY LANDFILL

Reporting Cost:

Item	Personnel	Rate		Units	Qnty	Subtotal	
Sr. Consultant	1	\$	186	/hr	8	\$	1,488
Geologist	1	\$	112	/hr	20	\$	2,240
Drafter	1	\$	97	/hr	4	\$	388
Administrative	1	\$	73	/hr	2	\$	146
Office Service Fee			5\%	rate		\$	213.10
						\$	4,475
					Soil T	\$	40,791

Notes:

1. Assumes 15 soil borings in the waste excavation area at approximately every 500 feet at 2 sample depths each.

5. SWPPP PREPARATION AND IMPLEMENTATION
 WASTE RELOCATION COST ESTIMATE WESTERN REGIONAL SANITARY LANDFILL

SWPPP Preparation

Crew Costs:

Position		Operator Group	Base Wage Rate		12\% Surcharge		33% Profit		Wage Rate		Unit
2 Man Survey Crew ${ }^{3}$	--	--	\$	100.00	\$	12.00	\$	33.00	\$	145.00	/hr
3 Man Drilling Crew ${ }^{3}$	--	--	\$	230.00	\$	27.60	\$	75.90	\$	333.50	/hr
Licensed Surveyor ${ }^{3}$	--	--	\$	40.00	\$	4.80	\$	13.20	\$	58.00	/hr
Laborer	Laborer	3	\$	51.84	\$	6.22	\$	17.11	\$	75.17	/hr
Backhoe Operator	Operator	4	\$	73.06	\$	8.77	\$	24.11	\$	105.94	/hr
Compactor Operator	Operator	5	\$	71.79	\$	8.61	\$	23.69	\$	104.10	/hr
Excavator Operator	Operator	3	\$	72.44	\$	8.69	\$	23.91	\$	105.04	/hr
Foreman ${ }^{3}$	--	--	\$	65.00	\$	7.80	\$	21.45	\$	94.25	/hr
Forklift Operator	Teamster	1	\$	58.27	\$	6.99	\$	19.23	\$	84.49	/hr
Dump Truck Operator	Teamster	3	\$	58.57	\$	7.03	\$	19.33	\$	84.93	/hr
Grader Operator	Operator	4	\$	73.06	\$	8.77	\$	24.11	\$	105.94	/hr
Gradesetter Operator	Operator	4	\$	73.06	\$	8.77	\$	24.11	\$	105.94	/hr
Grading Dozer Operator	Operator	4	\$	73.06	\$	8.77	\$	24.11	\$	105.94	/hr
Maintenance Truck Operator	Operator	5	\$	68.19	\$	8.18	\$	22.50	\$	98.88	/hr
Mixer Operator	Operator	8	\$	68.19	\$	8.18	\$	22.50	\$	98.88	/hr
Scraper Operator - Mixing	Operator	4	\$	73.06	\$	8.77	\$	24.11	\$	105.94	/hr
Scraper Operator - Placement	Operator	4	\$	73.06	\$	8.77	\$	24.11	\$	105.94	/hr
Seed Truck Operator	Laborer	1	\$	53.09	\$	6.37	\$	17.52	\$	76.98	/hr
Skid Track Loader Operator	Operator	4	\$	73.06	\$	8.77	\$	24.11	\$	105.94	/hr
Spreading Dozer Operator	Operator	4	\$	73.06	\$	5 8.77	\$	24.11	\$	105.94	/hr
Supervisor ${ }^{3}$	--	--	\$	90.00	\$	10.80	\$	29.70	\$	130.50	/hr
Water Truck Operator - Mixing	Teamster	2	\$	58.57	\$	7.03	\$	19.33	\$	84.93	/hr
Water Truck Operator - Placement	Teamster	2	\$	58.57	\$	7.03	\$	19.33	\$	84.93	/hr

Engineering Costs:

Item	Rate per Unit	Unit	
Principal	$\$$	235.00	hr
Sr. Project Manager (Tech. Review)	$\$$	186.00	hr
Staff Engineer	$\$$	112.00	hr
Administrative	$\$$	73.00	hr
Sr. Technician	$\$$	110.00	hr
CQA Officer	$\$$	137.00	hr
Drafter	$\$$	97.00	hr

Equipment, Maintenance and Fuel Costs:

Item	Source	Cal Trans ${ }^{2}$ Rate per/hr		15\% Profit \& Overhead		Rate per Unit		Unit
Job Trailer	100	\$	15.01	\$	2.25	\$	17.26	/hr
Generator	GEN1	\$	13.77	\$	2.07	\$	15.84	/hr
Pickup Truck	00-06	\$	22.02	\$	3.30	\$	25.32	/hr
Spreading Dozer - CAT D6M-LGP	3745	\$	75.85	\$	11.38	\$	87.23	/hr
Push Dozer - CAT D8N	4864	\$	146.27	\$	21.94	\$	168.21	/hr
Dump Truck	5AXL	\$	76.23	\$	11.43	\$	87.66	/hr
Excavator - CAT 375L	0365	\$	280.82	\$	42.12	\$	322.94	/hr
Grading Dozer - CAT D6	3720	\$	67.08	\$	10.06	\$	77.14	/hr
Scraper 1 - CAT 637D - Placement	2470	\$	283.93	\$	42.59	\$	326.52	/hr
Scraper 1 - CAT 637D - Mixing	2470	\$	283.93	\$	42.59	\$	326.52	/hr
Compactor - CAT 825C	2510	\$	177.96	\$	26.69	\$	204.65	/hr
Grader - CAT 140H	3265	\$	78.70	\$	11.81	\$	90.51	/hr
Water Truck - 4000 Gal - Placement	48-60	\$	58.85	\$	8.83	\$	67.68	/hr
Water Truck - 4000 Gal - Mixing	48-60	\$	58.85	\$	8.83	\$	67.68	/hr
Maintenance Truck	00-06	\$	22.02	\$	3.30	\$	25.32	/hr
Mixer	09-10	\$	127.34	\$	19.10	\$	146.44	/hr
Skid Track Loader	1623	\$	74.62	\$	11.19	\$	85.81	/hr
Seed Truck	5AXL	\$	76.23	\$	11.43	\$	87.66	/hr
Drill Rig - Atlantic LLDH-120	5015	\$	191.30	\$	28.70	\$	220.00	/hr
Backhoe	1862	\$	34.92	\$	5.24	\$	40.16	/hr
Forklift	080-120	\$	51.29	\$	7.69	\$	58.98	/hr

Notes:

1. From the General Prevailing Wage determination made by the Director of Industrial Relations pursuant to California Labor Code Part 7, Chapter 1, Article 2, Sections 1770

1773 and 1773.1; Tables: Craft: TEAMSTER, Craft: OPERATING ENGINEER, Craft: \#OPERATING ENGINEER (HEAVY AND HIGHWAY WORK), and Craft: \#LABORER
AND RELATED CLASSIFICATIONS.
2. From the 2018 CalTrans Labor Surcharge and Equipment Rental Rates.
3. Wage is not determined by the General Prevailing Wages.

Appendix 4A-1

Design Documentation
 Main Entrance

Main entrance road:

Appendix 4A-1
Design Documentation
Western Entrance

Plan Concept 2 Quantities
Western Entrance:

Appendix 4A-1

Design Documentation
 Overpass

Western Placer Fiddyment Crossing Preliminary Cost Opinion

Date: Sep-17

Overcrossing w/Fill Alternative

Item	Unit	Quantity	Unit Cost	Cost
AC Paving	Sq Ft	28000	\$4.00	\$112,000
Aggregate Base	Sq Ft	28000	\$2.00	\$56,000
Embankment	Cu Yd	23704	\$20	\$474,074
Structure	Sq Ft	5250	\$300	\$1,575,000
			Subtotal:	\$2,217,074
		Contingency (35\%):		\$775,976
		Total:		\$2,993,050
Overcrossing w/Retaining Wall Fill Alternative				
Item	Unit	Quantity	Unit Cost	Cost
AC Paving	Sq Ft	28000	\$4.00	\$112,000
Aggregate Base	Sq Ft	28000	\$2.00	\$56,000
Embankment	Cu Yd	11852	\$20	\$237,037
Retaining Wall	Sq Ft	19200	\$150	\$2,880,000
Structure	Sq Ft	5250	\$300	\$1,575,000
			Subtotal:	\$4,860,037
		Continge	ncy (35\%):	\$1,701,013
			Total:	\$6,561,050

Undercrossing w/Cut Slope Alternative

	Unit	Quantity	Unit Cost	Cost
AC Paving	Sq Ft	28000	$\$ 4.00$	$\$ 112,000$
Aggregate Base	Sq Ft	28000	$\$ 2.00$	$\$ 56,000$
Excavation	Cu Yd	26537	$\$ 15$	$\$ 398,056$
Structure	Sq Ft	3200	$\$ 300$	$\$ 960,000$
Drainage Pump Station	Each	1	$\$ 250,000$	$\$ 250,000$
			Subtotal:	$\$ 1,776,056$
		Contingency (35\%):	$\$ 621,619$	
			Total:	$\$ 2,397,675$

Undercrossing w/Retaining Wall Alternative

	Unit	Quantity	Unit Cost	Cost		
AC Paving	Sq Ft	28000	$\$ 4.00$	$\$ 112,000$		
Aggregate Base	Sq Ft	28000	$\$ 2.00$	$\$ 56,000$		
Excavation	Cu Yd	12315	$\$ 15$	$\$ 184,722$		
Retaining Wall	Sq Ft	19200	$\$ 150$	$\$ 2,880,000$		
Structure	Sq Ft	3200	$\$ 300$	$\$ 960,000$		
Drainage Pump Station	Each	1	$\$ 250,000$	$\$ 250,000$		
			Subtotal:	$\$ 4,442,722$		
		Contingency (35\%):				$\$ 1,554,953$
			Total:	$\$ 5,997,675$		

Signal Alternative

	Unit	Quantity	Unit Cost	Cost
Approach Roadway Improvements	Each	1	$\$ 200,000$	$\$ 200,000$
4-way signalized intersection	Each	1	$\$ 300,000$	$\$ 300,000$
			Subtotal:	$\$ 500,000$
			Contingency (35\%):	$\$ 175,000$
			Total:	$\$ 675,000$

Assumptions:

25 mph design speed
16' 6" vertical clearance provided on overcrossing
$15^{\prime} 0$ " vertical clearance provided on undercrossing
Fiddyment is built out to 4 lanes
Crossing carries two lanes of traffice (12-foot lanes w/ 4-foot shoulders)
Utility relocations and/or utility spans are not included (i.e. sewer, water, power, telecommunications, etc.)
Impacts of potentail groundwater on feasibility of undercrossing has not been addressed

From:	Goodrich, Janet/SAC
Sent:	Friday, October 12, 2018 2:54 PM
To:	McRae, Jennifer/SJC
Subject:	FW: concepts for grade separation crossing of Fiddyment road element for WPWMA master planning
	project [EXTERNAL]

From: Negrete, Matt/SAC
Sent: Friday, August 25, 2017 4:15 PM
To: Goodrich, Janet/SAC Janet.Goodrich@CH2M.com; Lopez, Lyndsey/PDX Lyndsey.Lopez@ch2m.com
Subject: RE: concepts for grade separation crossing of Fiddyment road element for WPWMA master planning project [EXTERNAL]

Works for me.

From: Goodrich, Janet/SAC
Sent: Friday, August 25, 2017 4:03 PM
To: Negrete, Matt/SAC < Matt.Negrete@CH2M.com>; Lopez, Lyndsey/PDX Lyndsey.Lopez@ch2m.com
Subject: RE: concepts for grade separation crossing of Fiddyment road element for WPWMA master planning project [EXTERNAL]

How about I reply back that we are not sure that that standard will be applicable, but will proceed with an assumption of 80-90 feet.

From: Negrete, Matt/SAC
Sent: Friday, August 25, 2017 3:47 PM
To: Goodrich, Janet/SAC Janet.Goodrich@CH2M.com; Lopez, Lyndsey/PDX Lyndsey.Lopez@ch2m.com
Subject: RE: concepts for grade separation crossing of Fiddyment road element for WPWMA master planning project [EXTERNAL]

Yes and no.

It's unclear if Fiddyment should be designated an Urban Primary facility. If there are no residences, commercial facilities, or schools in the area, I don't believe that the sidewalks would be required. Also, a two way left turn lane may or may not be appropriate. Part of this depends on whether or not traffic will need to turn left across on-coming traffic. If that isn't happening, then a smaller meadian could be used. We can use this as a starting point.

FYI - I'm currently laying something out based on providing an 80^{\prime} opening. This includes the 64 feet mentioned below, as well as some additional real estate for accommodating drainage ditches on each edge of the roadway. However, at this point, whether we use 80^{\prime} or 90^{\prime} for the horizontal opening we need to accommodate with an overcrossing (or undercrossing), it won't change the order of magnitude of the project costs. I can use Plate 106 if you'd like, as it is a County Standard, but l'm not convinced it will apply here.

From: Goodrich, Janet/SAC
Sent: Friday, August 25, 2017 3:39 PM
To: Negrete, Matt/SAC Matt.Negrete@CH2M.com; Lopez, Lyndsey/PDX Lyndsey.Lopez@ch2m.com
Subject: FW: concepts for grade separation crossing of Fiddyment road element for WPWMA master planning project [EXTERNAL]

Hi Matt,
Does this make sense?
Janet

From: Keith Schmidt [mailto:KSchmidt@placer.ca.gov]
Sent: Friday, August 25, 2017 3:37 PM
To: Goodrich, Janet/SAC Janet.Goodrich@CH2M.com
Cc: Lopez, Lyndsey/PDX Lyndsey.Lopez@ch2m.com; Eric Oddo EOddo@placer.ca.gov; Stephanie Ulmer SUlmer@placer.ca.gov
Subject: RE: concepts for grade separation crossing of Fiddyment road element for WPWMA master planning project [EXTERNAL]

Janet,
Plate 106 of the Placer County Standard Plates (located here) is the County's current design standard for "urban primary" streets which I think would be the standard applied to this situation. Our property developments are subject to review by the Design Review Committee and they unfortunately use a Design Guidelines manual that is now 15-years old. At some point this manual will be superseded. In the meantime, I thought maybe the community plan update for this area would have something, but it indicated "In parallel with the preparation of the Draft SIA Plan, the County will prepare Corridor Design Standards and Guidelines for key areas of the SIA, including Sunset Boulevard, Athens Avenue, Foothill Boulevard, and Placer Parkway." Fiddyment appears to have been forgotten. I have to assume that's an oversight and I am reaching out to the County to determine the schedule for daylighting this Corridor Design Standards and Guidelines manual.

Either way, based on adopted standards, I think we are looking at a 90' right-of-way width per the attached plate.

Keith J. Schmidt, P.E. | Senior Civil Engineer | Western Placer Waste Management Authority | (Mail) 11476 "C" Ave. Auburn, CA 95603 | (Physical) 3033 Fiddyment Rd. Roseville, CA 95747 | (916) 543-3986 (Direct) | (916) 543-3990 (Fax)

From: Goodrich, Janet/SAC [mailto:Janet.Goodrich@CH2M.com]
Sent: Friday, August 25, 2017 1:55 PM
To: Eric Oddo; Keith Schmidt; Stephanie Ulmer
Cc: Lopez, Lyndsey/PDX
Subject: RE: concepts for grade separation crossing of Fiddyment road element for WPWMA master planning project

Thank you, confirmed

From: Eric Oddo [mailto:EOddo@placer.ca.gov]
Sent: Friday, August 25, 2017 1:49 PM
To: Goodrich, Janet/SAC Janet.Goodrich@CH2M.com; Keith Schmidt KSchmidt@placer.ca.gov; Stephanie Ulmer SUlmer@placer.ca.gov
Cc: Lopez, Lyndsey/PDX Lyndsey.Lopez@ch2m.com

Subject: RE: concepts for grade separation crossing of Fiddyment road element for WPWMA master planning project [EXTERNAL]

Those look like reasonable assumptions to me

From: Goodrich, Janet/SAC [mailto:Janet.Goodrich@CH2M.com]
Sent: Friday, August 25, 2017 1:46 PM
To: Eric Oddo; Keith Schmidt; Stephanie Ulmer
Cc: Lopez, Lyndsey/PDX
Subject: concepts for grade separation crossing of Fiddyment road element for WPWMA master planning project
Hi Eric,
We are working with our transportation engineer, Matt. He documented the base assumptions he is using for the information we need for the Charrette:

- Space and configuration of area for the crossing (under and over crossings), including ingress/egress
- Very rough industry standard type costs for both.

Please look this over and make sure you are ok with these general assumptions at this stage. Thanks, Janet

From: Negrete, Matt/SAC
Sent: Friday, August 25, 2017 12:44 PM
To: Goodrich, Janet/SAC < Janet.Goodrich@CH2M.com>
Cc: Lopez, Lyndsey/PDX Lyndsey.Lopez@ch2m.com
Subject: RE: western placer waste management authority project
Janet/Lyndsey,
Good talk this morning. Here are the current design assumptions I plan on moving forward with:

- Proposed crossing will be over Fiddyment
- Crossing may be adjacent to Athens, or possibly further south
- Assume Fiddyment will be built out to four 12 -foot lanes, have two 4 -foot bike lanes, and two 4 -foot shoulders in the future for a total width of 64 feet. Regardless of the details, though, I think we should assume a two span bridge over Fiddyment. (similar to how it is south of Placer Parkway future area)
- Provide two lanes over (or under) Fiddyment for facility use. Lanes will be 12 feet wide with 4 foot shoulders.
- Design speed on the over/undercrossing is 25 mph

I'm sure I'll be in touch as we move forward developing some preliminary layouts for these alternatives
Thanks,
Matt

```
From: Negrete, Matt/SAC
To: Lopez, Lyndsey/PDX; Goodrich, Janet/SAC; Gonzales, Shannon/SAC
Subject: RE: wpwma layouts
Date:
Wednesday, September 06, 2017 12:46:19 PM
```

The 122 foot dimension is what we need at the ends/approaches of the crossing for the turning movements.

Also, if we switch to a solution that uses retaining walls, the width would probably drop to around 40 feet for a two lane option.

From: Lopez, Lyndsey/PDX
Sent: Wednesday, September 06, 2017 12:07 PM
To: Negrete, Matt/SAC Matt.Negrete@CH2M.com; Goodrich, Janet/SAC
Janet.Goodrich@CH2M.com; Gonzales, Shannon/SAC Shannon.Gonzales@ch2m.com
Subject: RE: wpwma layouts

Josh said he used a 122 ft by 930 ft , he said this includes the cut/fill limits

From: Negrete, Matt/SAC
Sent: Wednesday, September 06, 2017 10:14 AM
To: Lopez, Lyndsey/PDX Lyndsey.Lopez@ch2m.com; Goodrich, Janet/SAC
Janet.Goodrich@CH2M.com; Gonzales, Shannon/SAC Shannon.Gonzales@ch2m.com
Subject: RE: wpwma layouts

What width did you use for the rectangle? Does that include any fill limits, or is that assuming we have retaining walls on either option?

Note that we assumed a two lane road with 4 foot shoulders. Depending on the client requirements, we could skinny this up using narrower lanes and shoulders, or possibly only having a single lane of traffic, as well.

From: Lopez, Lyndsey/PDX
Sent: Wednesday, September 06, 2017 9:33 AM
To: Goodrich, Janet/SAC <Janet.Goodrich@ CH2M.com>; Gonzales, Shannon/SAC Shannon.Gonzales@ch2m.com
Cc: Negrete, Matt/SAC Matt.Negrete@CH2M.com
Subject: RE: wpwma layouts

Hi All - Please see the screen shot of the over/underpass. As you can see it currently is huge and blocks nearly the entire entrance of the MRF.

Matt - do you have suggestions on repositioning? Could it be shifted to the left, angled, something else?

Janet - we can talk about the other items, but we are at a point we need to "finalize drawings so we can print, and then use as a start. Then use tomorrow to move things and fine-tune. Lets talk more.

From: Goodrich, Janet/SAC
Sent: Wednesday, September 06, 2017 7:43 AM
To: Lopez, Lyndsey/PDX Lyndsey.Lopez@ch2m.com; Gonzales, Shannon/SAC
Shannon.Gonzales@ch2m.com
Cc: Negrete, Matt/SAC <Matt. Negrete@CH2M.com>
Subject: wpwma layouts

Hi ladies,
A couple of points from my conversation with Eric yesterday and more.

1. The current HHW facility is expendable and can be replaced. Eric expects it will need to be replaced with more convenient locations. We should plan for:
a. For layouts where public facility is on western parcel, put a full service hhw drop off facility there as part of the public area, should fit within the footprint of the 5-6 acre public area that Lyndsey mapped out, but we should note that I our assumptions summary. Put a smaller facility near the MRF for materails they pull out. He doesn't want to assume there will be bulking but that the HHW hauler will service both locations to avoid hazardous waste transportation concerns with non-licensed entities.
b. For layouts where public facility is on existing or eastern parcel, we may be ok with one location in the public area, but should consider a small area closer to MRF as being held just in case, could be part of the corp yard or something else.
2. This means that we should see if there is any way that a under or over crossing will fit in that corner (if HHW facility is gone) and at least have that as one option. If it can't be done without the more extensive/expensive retaining walls like Matt mentioned (to save space), then we
should note that.
3. I don't recall if Matt N or someone was going to get us something on the conveyer and tunnel. Was Matt going to give us the tunnel price? i.e. assume a certain no of feet, certain diameter, certain construction (maybe even lined with a large culvert).

Janet

Janet Goodrich, P.E*

Direct: 19162860362
Mobile: 15303083677
email: ianet.goodrich@ch2m.com

CH2M

2485 Natomas Park Drive, Suite 600
Sacramento, CA 95833
www.ch2m.com | Linkedln | Twitter \| Facebook
*P.E. Civil, CA, OR, NV. Environmental, OR.

Appendix 4A-1

Design Documentation
 New Stormwater Ponds

NOAA Atlas 14, Volume 6, Version 2 Location name: Roseville, California, USA*

Latitude: 38.8379°, Longitude: -121.349${ }^{\circ}$
Elevation: 123.93 ft** $^{* *}$
source: ESRI Maps
** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland
PF tabular I PF graphical I Maps \& aerials
PF tabular

PDS-based point precipitation frequency estimates with $\mathbf{9 0 \%}$ confidence intervals (in inches) ${ }^{\mathbf{1}}$										
Duration	Average recurrence interval (years)									
	1	2	5	10	25	50	100	200	500	1000
5-min	0.109 $(0.098-0.122)$	0.133 $(0.120-0.149)$	$\begin{gathered} \mathbf{0 . 1 6 8} \\ (0.151-0.189) \\ \hline \end{gathered}$	0.199 $(0.176-0.226)$	$\begin{gathered} \mathbf{0 . 2 4 5} \\ (0.206-0.294) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 2 8 4} \\ (0.232-0.352) \end{gathered}$	$\begin{gathered} \mathbf{0 . 3 2 8} \\ (0.258-0.421) \end{gathered}$	$\begin{gathered} \mathbf{0 . 3 7 7} \\ (0.284-0.504) \\ \hline \end{gathered}$	$\mathbf{0 . 4 5 0}$ $(0.320-0.639)$	$\begin{gathered} 0.514 \\ (0.348-0.766) \end{gathered}$
10-min	$\begin{gathered} \mathbf{0 . 1 5 6} \\ (0.141-0.174) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 1 9 1} \\ (0.172-0.214) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 2 4 0} \\ (0.216-0.271) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 2 8 5} \\ (0.252-0.325) \\ \hline \end{gathered}$	0.351 $(0.296-0.421)$	0.407 $(0.332-0.504)$	$\begin{gathered} \mathbf{0 . 4 7 0} \\ (0.370-0.603) \end{gathered}$	0.540 $(0.408-0.722)$	$\begin{gathered} \mathbf{0 . 6 4 5} \\ (0.459-0.916) \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.736 \\ (0.498-1.10) \\ \hline \end{gathered}$
15-mi	0.189 $(0.170-0.211)$	0.230 $(0.208-0.258)$	0.291 $(0.261-0.327)$	$\mathbf{0 . 3 4 4}$ $(0.305-0.393)$	$\mathbf{0 . 4 2 5}$ $(0.358-0.509)$	0.493 $(0.402-0.610)$	0.568 $(0.447-0.729)$	$\mathbf{0 . 6 5 3}$ $(0.493-0.873)$	0.780 $(0.555-1.11)$	0.890 $(0.603-1.33)$
30-min	$\begin{gathered} \mathbf{0 . 2 6 2} \\ (0.237-0.294) \\ \hline \end{gathered}$	$\mathbf{0 . 3 2 1}$ $(0.289-0.359)$	0.404 $(0.363-0.455)$	0.479 $(0.425-0.546)$	0.591 $(0.497-0.708)$	0.685 $(0.559-0.848)$	$\begin{gathered} 0.790 \\ (0.622-1.01) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{0 . 9 0 8} \\ (0.686-1.22) \\ \hline \end{array}$	$\begin{gathered} 1.09 \\ (0.772-1.54) \\ \hline \end{gathered}$	$\begin{gathered} 1.24 \\ (0.839-1.85) \\ \hline \end{gathered}$
60-min	0.356 $(0.322-0.399)$	$\mathbf{0 . 4 3 6}$ $(0.393-0.488)$	0.549 $(0.493-0.618)$	$\mathbf{0 . 6 5 1}$ $(0.577-0.742)$	$\mathbf{0 . 8 0 2}$ $(0.676-0.962)$	$\begin{gathered} 0.931 \\ (0.760-1.15) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \hline 1.07 \\ (0.845-1.38) \\ \hline \end{array}$	$\begin{gathered} \hline 1.23 \\ (0.932-1.65) \\ \hline \end{gathered}$	$\begin{gathered} 1.47 \\ (1.05-2.09) \\ \hline \end{gathered}$	$\begin{gathered} 1.68 \\ (1.14-2.51) \\ \hline \end{gathered}$
2-hr	$\mathbf{0 . 5 1 9}$ $(0.468-0.580)$	$\mathbf{0 . 6 2 1}$ $(0.560-0.696)$	$\mathbf{0 . 7 6 8}$ $(0.689-0.864)$	0.898 $(0.796-1.02)$	$\begin{gathered} 1.09 \\ (0.920-1.31) \end{gathered}$	$\begin{gathered} \hline 1.25 \\ (1.02-1.55) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 1.44 \\ (1.13-1.84) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 1.64 \\ (1.24-2.19) \\ \hline \end{gathered}$	$\begin{gathered} 1.94 \\ (1.38-2.75) \\ \hline \end{gathered}$	$\begin{gathered} 2.19 \\ (1.49-3.27) \end{gathered}$
3-hr	0.649 $(0.586-0.726)$	$\mathbf{0 . 7 7 2}$ $(0.696-0.865)$	$\begin{gathered} 0.947 \\ (0.850-1.07) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 1.10 \\ (0.977-1.26) \\ \hline \end{gathered}$	$\begin{gathered} 1.33 \\ (1.12-1.60) \\ \hline \end{gathered}$	$\begin{gathered} 1.52 \\ (1.24-1.89) \end{gathered}$	$\begin{gathered} 1.74 \\ (1.37-2.23) \\ \hline \end{gathered}$	$\begin{gathered} 1.97 \\ (1.49-2.63) \\ \hline \end{gathered}$	$\begin{gathered} 2.32 \\ (1.65-3.29) \end{gathered}$	$\begin{gathered} 2.62 \\ (1.77-3.90) \end{gathered}$
6-hr	$\begin{array}{c\|} \hline \mathbf{0 . 9 4 0} \\ (0.848-1.05) \\ \hline \end{array}$	$\begin{gathered} 1.11 \\ (1.00-1.25) \end{gathered}$	$\begin{gathered} 1.36 \\ (1.22-1.53) \\ \hline \end{gathered}$	$\begin{gathered} 1.57 \\ (1.39-1.79) \\ \hline \end{gathered}$	$\begin{gathered} 1.88 \\ (1.59-2.26) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 1 4} \\ (1.75-2.65) \\ \hline \end{gathered}$	$\begin{gathered} 2.42 \\ (1.91-3.11) \\ \hline \end{gathered}$	$\begin{gathered} 2.73 \\ (2.06-3.65) \\ \hline \end{gathered}$	$\begin{gathered} 3.18 \\ (2.26-4.52) \\ \hline \end{gathered}$	$\begin{gathered} 3.56 \\ (2.41-5.32) \\ \hline \end{gathered}$
12-hr	$\begin{gathered} 1.29 \\ (1.16-1.44) \\ \hline \end{gathered}$	$\begin{gathered} 1.56 \\ (1.41-1.75) \\ \hline \end{gathered}$	$\begin{gathered} 1.93 \\ (1.73-2.17) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 2 4} \\ (1.99-2.56) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 6 9} \\ (2.26-3.22) \\ \hline \end{gathered}$	$\begin{gathered} 3.04 \\ (2.48-3.77) \\ \hline \end{gathered}$	$\begin{gathered} 3.42 \\ (2.69-4.39) \\ \hline \end{gathered}$	$\begin{gathered} 3.82 \\ (2.89-5.11) \\ \hline \end{gathered}$	$\begin{gathered} 4.39 \\ (3.12-6.24) \\ \hline \end{gathered}$	$\begin{gathered} 4.85 \\ (3.29-7.24) \\ \hline \end{gathered}$
24-h	$\begin{gathered} 1.78 \\ (1.63-1.99) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.23 \\ (2.03-2.49) \end{gathered}$	$\begin{gathered} \hline 2.82 \\ (2.57-3.17) \end{gathered}$	$\begin{gathered} \hline \hline 3.31 \\ (2.99-3.74) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 3.98 \\ (3.46-4.66) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 4.50 \\ (3.83-5.39) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline \mathbf{5 . 0 3} \\ (4.17-6.19) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 5.58 \\ (4.49-7.08) \\ \hline \end{gathered}$	$\begin{gathered} 6.35 \\ (4.88-8.42) \end{gathered}$	6.95 $(5.16-9.56)$
2-day	$\begin{gathered} \hline 2.32 \\ (2.12-2.59) \\ \hline \end{gathered}$	$\begin{gathered} 2.94 \\ (2.68-3.29) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.74 \\ (3.40-4.19) \end{gathered}$	$\begin{gathered} \hline 4.39 \\ (3.96-4.97) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.27 \\ (4.59-6.18) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.94 \\ (5.06-7.13) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.63 \\ (5.49-8.16) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.33 \\ (5.90-9.30) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.28 \\ (6.37-11.0) \\ \hline \end{gathered}$	$\begin{gathered} 9.02 \\ (6.69-12.4) \end{gathered}$
3-day	$\begin{gathered} 2.72 \\ (2.48-3.03) \\ \hline \end{gathered}$	$\begin{gathered} 3.46 \\ (3.16-3.87) \\ \hline \end{gathered}$	$\begin{gathered} 4.42 \\ (4.02-4.95) \\ \hline \end{gathered}$	$\begin{gathered} 5.19 \\ (4.68-5.87) \\ \hline \end{gathered}$	$\begin{gathered} 6.22 \\ (5.42-7.30) \\ \hline \end{gathered}$	$\begin{gathered} 7.01 \\ (5.97-8.41) \\ \hline \end{gathered}$	$\begin{gathered} 7.80 \\ (6.47-9.61) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{8 . 6 1} \\ (6.93-10.9) \\ \hline \end{gathered}$	$\begin{gathered} 9.70 \\ (7.46-12.9) \\ \hline \end{gathered}$	$\begin{gathered} 10.5 \\ (7.81-14.5) \\ \hline \end{gathered}$
4-day	$\begin{gathered} 3.01 \\ (2.75-3.36) \\ \hline \end{gathered}$	$\begin{gathered} 3.85 \\ (3.51-4.31) \\ \hline \end{gathered}$	$\begin{gathered} 4.93 \\ (4.48-5.52) \\ \hline \end{gathered}$	$\begin{gathered} 5.79 \\ (5.22-6.54) \\ \hline \end{gathered}$	$\begin{gathered} 6.93 \\ (6.03-8.13) \\ \hline \end{gathered}$	$\begin{gathered} 7.79 \\ (6.63-9.35) \\ \hline \end{gathered}$	$\begin{gathered} 8.66 \\ (7.18-10.7) \\ \hline \end{gathered}$	$\begin{gathered} 9.53 \\ (7.67-12.1) \\ \hline \end{gathered}$	$\begin{gathered} 10.7 \\ (8.23-14.2) \\ \hline \end{gathered}$	$\begin{gathered} 11.6 \\ (8.60-15.9) \end{gathered}$
7-day	$\begin{gathered} \hline 3.70 \\ (3.38-4.13) \\ \hline \end{gathered}$	$\begin{gathered} 4.76 \\ (4.34-5.32) \\ \hline \end{gathered}$	$\begin{gathered} 6.09 \\ (5.54-6.83) \end{gathered}$	$\begin{gathered} 7.14 \\ (6.44-8.07) \end{gathered}$	$\begin{gathered} 8.50 \\ (7.40-9.97) \end{gathered}$	$\begin{gathered} 9.52 \\ (8.10-11.4) \\ \hline \end{gathered}$	$\begin{gathered} 10.5 \\ (8.71-12.9) \\ \hline \end{gathered}$	$\begin{gathered} 11.5 \\ (9.26-14.6) \\ \hline \end{gathered}$	$\begin{gathered} 12.8 \\ (9.86-17.0) \\ \hline \end{gathered}$	$\begin{gathered} \hline 13.8 \\ (10.2-19.0) \\ \hline \end{gathered}$
10-day	$\begin{gathered} 4.19 \\ (3.83-4.67) \end{gathered}$	$\begin{gathered} \hline 5.39 \\ (4.92-6.03) \\ \hline \end{gathered}$	$\begin{gathered} 6.90 \\ (6.27-7.73) \end{gathered}$	$\begin{gathered} \hline 8.06 \\ (7.27-9.12) \\ \hline \end{gathered}$	$\begin{gathered} 9.58 \\ (8.33-11.2) \\ \hline \end{gathered}$	$\begin{gathered} 10.7 \\ (9.09-12.8) \\ \hline \end{gathered}$	$\begin{gathered} 11.8 \\ (9.75-14.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 12.8 \\ (10.3-16.3) \\ \hline \end{gathered}$	$\begin{gathered} \hline 14.2 \\ (10.9-18.9) \\ \hline \end{gathered}$	$\begin{gathered} 15.3 \\ (11.3-21.0) \end{gathered}$
20-day	$\begin{gathered} 5.52 \\ (5.05-6.17) \end{gathered}$	$\begin{gathered} \hline 7.11 \\ (6.49-7.96) \\ \hline \end{gathered}$	$\begin{gathered} 9.07 \\ (8.26-10.2) \end{gathered}$	$\begin{gathered} 10.6 \\ (9.54-12.0) \end{gathered}$	$\begin{gathered} 12.5 \\ (10.9-14.7) \\ \hline \end{gathered}$	$\begin{gathered} 13.9 \\ (11.8-16.7) \\ \hline \end{gathered}$	$\begin{gathered} 15.2 \\ (12.6-18.8) \end{gathered}$	$\begin{gathered} \hline 16.6 \\ (13.3-21.0) \\ \hline \end{gathered}$	$\begin{gathered} 18.2 \\ (14.0-24.2) \\ \hline \end{gathered}$	$\begin{gathered} 19.5 \\ (14.5-26.8) \end{gathered}$
30-day	$\begin{gathered} 6.67 \\ (6.10-7.45) \\ \hline \end{gathered}$	$\begin{gathered} 8.56 \\ (7.81-9.57) \\ \hline \end{gathered}$	$\begin{gathered} 10.9 \\ (9.89-12.2) \\ \hline \end{gathered}$	$\begin{gathered} 12.6 \\ (11.4-14.3) \\ \hline \end{gathered}$	$\begin{gathered} 14.9 \\ (13.0-17.5) \end{gathered}$	$\begin{gathered} 16.5 \\ (14.0-19.8) \\ \hline \end{gathered}$	$\begin{gathered} 18.1 \\ (15.0-22.2) \\ \hline \end{gathered}$	$\begin{gathered} 19.6 \\ (15.8-24.8) \\ \hline \end{gathered}$	$\begin{gathered} 21.5 \\ (16.6-28.5) \\ \hline \end{gathered}$	$\begin{gathered} 22.9 \\ (17.0-31.5) \\ \hline \end{gathered}$
45-day	$\begin{gathered} \hline 8.22 \\ (7.51-9.18) \\ \hline \end{gathered}$	$\begin{gathered} 10.4 \\ (9.53-11.7) \end{gathered}$	$\begin{gathered} 13.2 \\ (12.0-14.7) \end{gathered}$	$\begin{gathered} 15.2 \\ (13.7-17.2) \end{gathered}$	$\begin{gathered} 17.9 \\ (15.5-20.9) \\ \hline \end{gathered}$	$\begin{gathered} 19.7 \\ (16.8-23.7) \\ \hline \end{gathered}$	$\begin{gathered} \hline 21.6 \\ (17.9-26.5) \end{gathered}$	$\begin{gathered} 23.3 \\ (18.8-29.6) \end{gathered}$	$\begin{gathered} 25.5 \\ (19.7-33.9) \end{gathered}$	$\begin{gathered} 27.1 \\ (20.1-37.3) \end{gathered}$
60-day	$\begin{gathered} \hline 9.84 \\ (8.99-11.0) \end{gathered}$	$\begin{gathered} \hline 12.4 \\ (11.3-13.8) \end{gathered}$	$\begin{gathered} \hline 15.4 \\ (14.1-17.3) \end{gathered}$	$\begin{gathered} 17.8 \\ (16.1-20.1) \end{gathered}$	$\begin{gathered} \hline 20.8 \\ (18.1-24.4) \end{gathered}$	$\begin{gathered} 22.9 \\ (19.5-27.5) \end{gathered}$	$\begin{gathered} 25.0 \\ (20.7-30.8) \end{gathered}$	$\begin{gathered} 27.0 \\ (21.7-34.2) \end{gathered}$	$\begin{gathered} \hline 29.5 \\ (22.7-39.1) \end{gathered}$	$\begin{gathered} \hline 31.3 \\ (23.2-43.1) \end{gathered}$

1 Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS)
Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values
Please refer to NOAA Atlas 14 document for more information.

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 38.8379°, Longitude: -121.3490°

Average recurrence interval (years)
-1
-2
-5
-10
-25
-50
-100
-200
-500
-1000

Duration		
	5-min 10-min 15-min $30-\mathrm{min}$ $60-\mathrm{min}$ 2-hr 3-hr 6-hr 12-hr 24-hr	$\begin{aligned} & \text { - 2-day } \\ & \text { - 3-day } \\ & \text { - 4-day } \\ & \text { - } 7 \text {-day } \\ & \text { — } 0 \text {-day } \\ & \text { - 20-day } \\ & \text { — } 30 \text {-day } \\ & \text { - } 60 \text {-day } \end{aligned}$

Maps \& aerials

Large scale terrain

Back to Top

US Department of Commerce
 National Oceanic and Atmospheric Administration
 National Weather Service
 National Water Center
 1325 East West Highway
 Silver Spring, MD 20910

Questions?: HDSC.Questions@noaa.gov
Disclaimer

Plan Concept 0 Stormwater Ponds

Type		Name (Slides)	Name Detail (Poster)
Critical Element	C\&D	Construction \& Demolition	18.063408
Critical Element	Composting	Composting Operations	48.571575
Critical Element	Landfill	Landfill Operations	15.690817
Critical Element	Public	Public Tip/HHW/Buyback/Reuse	14.976759

c=	$\mathrm{i}=$ (in inches)	$\mathrm{V}=$ (required)	$\mathrm{V}=$ (calculated)	A (true) $=$	A (plan) $=$	L_{1}	W_{1}	H_{1}	S	L_{2}	W_{2}
0.95	5.03	313327	313875	71320	70500	300	235	5	3	270	205
0.95	5.03	842520	843500	182650	181300	490	370	5	3	460	340
0.95	6.95	376063	377352	73460	72450	345	210	6	3	309	174
0.95	5.03	259786	262848	72670	72000	300	240	4	3	276	216

infiltration from NOAA Atlas 14, Volume 6, Version 2
100-year, 24-hour intensity for all facilities but landfil
1000-yr, 24-hour intensity for landfill (Class II)

A (plan) used for clearing and grubbing
A (true) used for liner material estimate

Plan Concept 1 Stormwater Ponds

| Type | | Name (Slides) | Name Detail (Poster) |
| :--- | :--- | :--- | ---: | | Acres |
| :--- |
| Critical Element |
| C\&D | Construction \& Demolition $\quad 12.385376$

c=	$\mathrm{i}=$ (in inches)	$\mathrm{V}=$ (required)	$\mathrm{V}=$ (calculated)	A (true) = A (plan)=		$\mathbf{L}_{1} \quad \mathbf{W}_{1} \mathbf{H}_{1} \mathbf{S}$				L_{2}	W_{2}
0.95	5.03	214836	216768	60620	60000	300	200	4	3	276	176
0.95	5.03	842520	843500	182650	181300	490	370	5	3	460	340
0.95	6.95	2766746	2789532	493240	490500	900	545		3	864	509
0.95	5.03	261954	262848	72670	72000	300	240		3	276	216

infiltration from NOAA Atlas 14, Volume 6, Version 2
100 -year, 24 -hour intensity for all facilities but landfill
1000-yr, 24-hour intensity for landfill (Class II)

Plan Concept 2 Stormwater Ponds

| Type | | Name (Slides) | Name Detail (Poster) |
| :--- | :--- | :--- | ---: | Acres | (Plition | 18.679478 | | |
| :--- | :--- | ---: | ---: |
| Critical Element | C\&D | Construction \& Demolition | 48.571575 |
| Critical Element | Composting | Composting Operations | 216.505172 |
| Critical Element | Landfill | Landfill Operations | 15.141801 |

c=	i= (in inches)	$\mathrm{V}=$ (required)	V= (calculated)	A (true) $=$	A (plan) $=$	L_{1}	$\mathbf{W}_{1} \mathrm{H}_{1} \mathbf{S}$			L_{2}	W_{2}
0.95	5.03	324013	328125	74340	73500	300	245	5	3	270	215
0.95	5.03	842520	843500	182650	181300	490	370	5	3	460	340
0.95	6.95	5188996	5202456	783950	780000	1000	780	7	3	958	738
0.95	5.03	262649	274368	75680	75000	300	250		3	276	226

infiltration from NOAA Atlas 14, Volume 6, Version 2 100-year, 24-hour intensity for all facilities but landfill
1000-yr, 24-hour intensity for landfill (Class II)

Appendix 4A-1

Design Documentation Compost Pond Removal

Design Assumptions

Pond Area	53200 sq ft 1.22 AC	
Width	280 ft	from Google Earth
Length	190 ft	from Google Earth
Depth	6 ft	assumed
Side Slope	$3: 1$	horizontal to vertical
Volume to remove	2 ft	below pond grades (to remove impacted soils)
	108100 cu ft	

5 ft pond depth (7 after removal of soils)

	$\mathrm{V}=$	A (true) $=$	A (plan) $=$	L_{1}	$\mathrm{~W}_{1}$	H_{1}	S		$\mathrm{~L}_{2}$	$\mathrm{~W}_{2}$
in feet (cf, $\mathrm{ff}, \mathrm{ft})$	271032	54050	53200	280	190	6	3		244	154

Appendix 4A-1
Design Documentation Special Permits and Allowances

Permits List

Composting Area
C\&D
Public Drop Off

Concept 0

Existing property
Existing property
Existing property

Landfill
Crossing

Existing property, 148 acres None

Concept 1

Western property
Existing property
Western property
Existing/Eastern property, 348 acres, displaces high-value wetlands and vernal pools on eastern property

Concept 2

Existing property
Existing property
Existing property
Existing property 148 acres, Western
poperty 216 acres, displaces wetland and
vernal pools on NW portion of western
property
Yes

			Notes		
Permitting Costs	How Much	Timing	Concept 0	Concept 1	Concept 2
Solid Waste Facility permitting (landfill)	Already covered in landfill modules tab under permitting line item (from Golder)	One time	Already covered in landfill modules tab	Already covered in landfill modules tab	Already covered in landfill modules tab
Solid Waste Facility permitting (compost)	10% of total capital of compost. Assume stormwater permits for discharge already covered in landfill or this overall cost (don't look specifically at stormwater elements).	For simplicity, assume sigle expense, same year as first installation of permanent negative ASP	10\% of compost (see timing)	10\% of compost (see timing)	10\% of compost (see timing)
Environmental/landuse/ local permitting	Dependent on the location of disturbed wetlands and vernal pools and the extent of high-value wetland/vernal pools. For development on the eastern property assume 2% of landfill capital (due to the extent of high-value wetland and vernal pools); for development on western property assume 1% of landfill capital (simplified by assuming only landfill is displacing wetlands)	Single expense, see year in notes (to the right)	None	2% of total landfill capital cost applied in Year 8 (2 years before the landfill construction on eastern property)	1\% of total landfill capital cost in Year 23 (2 years before the landfill construction on western property)

Note: A general permitting line item (already in the CapEx) will cover other items not explicitly listed above

Appendix 4A-1
Design Documentation
Wetlands Mitigation

Plan Concept 1				
	Wetland Impact		Wetland Mitigation	
Wetland Type	Acreage	Ratio (X:1)	Acreage to Purchase	Cost
Vernal Pools	3.20	3	9.61	\$2,883,420
Everything but Ag Ponds, Irrigated Wetland	8.76	2	17.52	\$5,257,020
Ag Ponds, Irrigated Wetland	1.33	1	1.33	\$399,420
TOTAL	13.30			\$8,539,860

Plan Concept 2				
Wetland Impact				
Wetland Type	Acreage	Ratio (Cost
Vernal Pools	1.33	3	3.99	\$1,197,720
Everything but Ag Ponds, Irrigated Wetland	6.43	2	12.85	\$3,855,360
Ag Ponds, Irrigated Wetland	1.33	1	1.33	\$399,420
TOTAL	9.09			\$5,452,500

Plan Concept 0				
Wetland Impact				
Wetland Type	Acreage	Ratio (Cost
Vernal Pools	0.30	3	0.91	\$272,610
Everything but Ag Ponds, Irrigated Wetland	0.64	2	1.27	\$382,200
Ag Ponds, Irrigated Wetland	0.00	1	0.00	\$0
TOTAL	0.94			\$654,810

Assumed Mitigation Pricer per acre
$\$ 300,000$

Per Jacobs biologist on 10/25/2018:
For the amount per acre, use this reference:
https://www.nfwf.org/ilf/Pages/home.aspx
$\$ 225 \mathrm{~K}-\$ 275 \mathrm{~K}$, in lieu fee program. First must go to mitigation banks, they may charge more than the in lieu program, but also can get better rate for large sum of credits. Market driven, we have a larger buy so have ability to negotiate with mitigation banks.

Based on this use reasonable of $\$ 300 \mathrm{~K}$ per acre.

Note: This includes Critical Elements and Necessary Supporting Elements

Plan Concept 1 Wetlands

Wetland ID	Acres	Wetland Type	Concept Element Category	Element Name
SW-42	0.0975	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-43	0.0413	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-44	0.0082	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-45	0.0019	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-46	0.0013	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-47	0.1179	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-48	0.0159	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-49	0.0528	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
VP-33	0.0460	Vernal Pool	Necessary Supporting Elements	Stormwater Pond
VP-34	0.0088	Vernal Pool	Necessary Supporting Elements	Stormwater Pond
VP-35	0.0028	Vernal Pool	Necessary Supporting Elements	Stormwater Pond
SP-1	0.2367	Seasonal Wetland (Pond)	Necessary Supporting Elements	Stormwater Pond
VP-36	0.0638	Vernal Pool	Necessary Supporting Elements	Stormwater Pond
VP-37	0.0991	Vernal Pool	Necessary Supporting Elements	Stormwater Pond
SW-50	0.0043	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
VP-38	0.0294	Vernal Pool	Necessary Supporting Elements	Stormwater Pond
SW-51	0.0501	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
VP-39	0.0530	Vernal Pool	Necessary Supporting Elements	Stormwater Pond
SW-52	0.0034	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-53	0.0059	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
S-03	1.5228	Swale	Critical Element	Landfill
VP-43	0.0393	Vernal Pool	Critical Element	Landfill
SW-58	0.2008	Seasonal Wetland	Critical Element	Landfill
VP-44	0.0885	Vernal Pool	Critical Element	Landfill
VP-45	0.0484	Vernal Pool	Critical Element	Landfill
SW-59	0.0459	Seasonal Wetland	Critical Element	Landfill
S-04	0.0148	Swale	Critical Element	Landfill
VP-46	0.0596	Vernal Pool	Critical Element	Landfill
VP-47	0.0783	Vernal Pool	Critical Element	Landfill
SW-60	0.1157	Seasonal Wetland	Critical Element	Landfill
SW-61	0.0318	Seasonal Wetland	Critical Element	Landfill
VP-48	0.0561	Vernal Pool	Critical Element	Landfill
S-05	0.0929	Swale	Critical Element	Landfill
VP-49	0.0606	Vernal Pool	Critical Element	Landfill
S-06	0.0888	Swale	Critical Element	Landfill
VP-50	0.3172	Vernal Pool	Critical Element	Landfill
S-07	0.0297	Swale	Critical Element	Landfill
VP-51	0.1160	Vernal Pool	Critical Element	Landfill
S-08	0.6379	Swale	Critical Element	Landfill
SW-65	0.0342	Seasonal Wetland	Critical Element	Landfill
SW-66	0.1785	Seasonal Wetland	Critical Element	Landfill
VP-53	0.1329	Vernal Pool	Critical Element	Landfill
SW-68	0.0347	Seasonal Wetland	Critical Element	Landfill
S-09	3.2274	Swale	Critical Element	Landfill
SW-71	0.0341	Seasonal Wetland	Necessary Supporting Elements	SW Pond
SW-72	0.0956	Seasonal Wetland	Critical Element	Landfill
SW-73	0.0388	Seasonal Wetland	Critical Element	Landfill
SW-74	0.0103	Seasonal Wetland	Critical Element	Landfill
SW-75	0.0211	Seasonal Wetland	Critical Element	Landfill
SW-76	0.0087	Seasonal Wetland	Critical Element	Landfill
SW-77	0.0038	Seasonal Wetland	Critical Element	Landfill

Plan Concept 1 Wetlands

Wetland ID	Acres	Wetland Type	Concept Element Category	Element Name
SW-78	0.0116	Seasonal Wetland	Critical Element	Landfill
SW-79	0.0037	Seasonal Wetland	Critical Element	Landfill
SW-80	0.0026	Seasonal Wetland	Critical Element	Landfill
SW-81	0.0036	Seasonal Wetland	Critical Element	Landfill
SW-82	0.0037	Seasonal Wetland	Critical Element	Landfill
SW-83	0.0507	Seasonal Wetland	Critical Element	Landfill
SW-84	0.1637	Seasonal Wetland	Critical Element	Landfill
SW-85	0.0111	Seasonal Wetland	Critical Element	Landfill
SW-86	0.0879	Seasonal Wetland	Critical Element	Landfill
SW-87	0.0741	Seasonal Wetland	Critical Element	Landfill
SW-88	0.3618	Seasonal Wetland	Critical Element	Landfill
SW-89	0.0415	Seasonal Wetland	Critical Element	Landfill
SW-90	0.0265	Seasonal Wetland	Critical Element	Landfill
SW-92	0.0038	Seasonal Wetland	Critical Element	Landfill
VP-56	0.0113	Vernal Pool	Critical Element	Landfill
VP-57	0.1073	Vernal Pool	Critical Element	Landfill
S-10	0.2646	Swale	Critical Element	Landfill
VP-58	0.0627	Vernal Pool	Critical Element	Landfill
S-11	0.1561	Swale	Critical Element	Landfill
VP-59	0.2209	Vernal Pool	Critical Element	Landfill
S-12	0.3427	Swale	Critical Element	Landfill
VP-60	0.0278	Vernal Pool	Critical Element	Landfill
VP-61	0.0062	Vernal Pool	Critical Element	Landfill
VP-62	0.0404	Vernal Pool	Critical Element	Landfill
VP-63	0.0086	Vernal Pool	Critical Element	Landfill
VP-64	0.0099	Vernal Pool	Critical Element	Landfill
VP-65	0.1090	Vernal Pool	Critical Element	Landfill
VP-67	0.7839	Vernal Pool	Critical Element	Landfill
VP-68	0.4604	Vernal Pool	Critical Element	Landfill
VP-69	0.0083	Vernal Pool	Critical Element	Landfill
AP-01	1.3314	Agricultural Pond	Necessary Supporting Elements	Entrance
SW-96	0.0177	Seasonal Wetland	Critical Element	Landfill
SW-97	0.0153	Seasonal Wetland	Critical Element	Landfill
VP-70	0.0155	Vernal Pool	Critical Element	Landfill
VP-71	0.0315	Vernal Pool	Critical Element	Landfill
SW-98	0.0037	Seasonal Wetland	Critical Element	Landfill
SW-99	0.0104	Seasonal Wetland	Necessary Supporting Elements	SW Pond

Plan Concept 2 Wetlands

Wetland ID	Acres	Wetland Type	Concept Element Category	Element Name
SW-12	0.2438	Seasonal Wetland	Necessary Supporting Elements	SW Pond
SW-1	0.0034	Seasonal Wetland	Critical Element	Landfill
SW-2	0.0146	Seasonal Wetland	Critical Element	Landfill
SW-3	0.0028	Seasonal Wetland	Critical Element	Landfill
SW-4	0.0072	Seasonal Wetland	Critical Element	Landfill
SW-5	0.0036	Seasonal Wetland	Critical Element	Landfill
SW-6	0.0289	Seasonal Wetland	Critical Element	Landfill
SW-7	0.0026	Seasonal Wetland	Critical Element	Landfill
SW-8	0.0051	Seasonal Wetland	Critical Element	Landfill
SW-9	0.0053	Seasonal Wetland	Critical Element	Landfill
SW-10	0.0087	Seasonal Wetland	Critical Element	Landfill
SW-13	0.0361	Seasonal Wetland	Critical Element	Landfill
SW-14	0.0018	Seasonal Wetland	Critical Element	Landfill
SW-15	0.0229	Seasonal Wetland	Necessary Supporting Elements	SW Pond
SW-16	0.0030	Seasonal Wetland	Necessary Supporting Elements	SW Pond
SW-17	0.0025	Seasonal Wetland	Necessary Supporting Elements	SW Pond
SW-18	0.0069	Seasonal Wetland	Necessary Supporting Elements	SW Pond
SW-19	0.0023	Seasonal Wetland	Necessary Supporting Elements	SW Pond
SW-20	0.0080	Seasonal Wetland	Necessary Supporting Elements	SW Pond
SW-21	0.0050	Seasonal Wetland	Critical Element	Landfill
SW-22	0.0080	Seasonal Wetland	Critical Element	Landfill
SW-23	0.0013	Seasonal Wetland	Critical Element	Landfill
SW-24	0.0200	Seasonal Wetland	Critical Element	Landfill
SW-25	0.0099	Seasonal Wetland	Critical Element	Landfill
SW-26	0.1111	Seasonal Wetland	Critical Element	Landfill
SW-27	0.0052	Seasonal Wetland	Critical Element	Landfill
SW-28	0.0045	Seasonal Wetland	Critical Element	Landfill
SW-29	0.0084	Seasonal Wetland	Critical Element	Landfill
SW-30	0.0090	Seasonal Wetland	Critical Element	Landfill
SW-31	0.0498	Seasonal Wetland	Necessary Supporting Elements	SW Pond
SW-33	0.0049	Seasonal Wetland	Critical Element	Landfill
SW-34	0.0206	Seasonal Wetland	Critical Element	Landfill
SW-35	0.0074	Seasonal Wetland	Critical Element	Landfill
SW-36	0.0217	Seasonal Wetland	Critical Element	Landfill
SW-37	0.0112	Seasonal Wetland	Necessary Supporting Elements	Maint
SW-38	0.0445	Seasonal Wetland	Necessary Supporting Elements	Maint
SW-40	0.0104	Seasonal Wetland	Critical Element	Landfill
S-01	0.0071	Swale	Critical Element	Landfill
SW-42	0.0975	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-43	0.0413	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-44	0.0082	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-45	0.0019	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-46	0.0013	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-47	0.1179	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-48	0.0159	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-49	0.0528	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SP-1	0.2367	Seasonal Wetland (Pond)	Necessary Supporting Elements	Stormwater Pond
SW-50	0.0043	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-51	0.0501	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-52	0.0034	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-53	0.0059	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-55	0.1193	Seasonal Wetland	Necessary Supporting Elements	SW Pond
SW-56	0.0043	Seasonal Wetland	Necessary Supporting Elements	SW Pond

Plan Concept 2 Wetlands

Wetland ID	Acres	Wetland Type	Concept Element Category	Element Name
SW-57	0.0050	Seasonal Wetland	Necessary Supporting Elements	SW Pond
SW-91	0.0080	Seasonal Wetland	Critical Element	C\&D
S-13	4.8824	Swale	Critical Element	SW Pond
VP-01	0.0061	Vernal Pool	Critical Element	Landfill
VP-02	0.0067	Vernal Pool	Critical Element	Landfill
VP-03	0.0147	Vernal Pool	Critical Element	Landfill
VP-04	0.0104	Vernal Pool	Critical Element	Landfill
VP-05	0.0026	Vernal Pool	Critical Element	Landfill
VP-06	0.0048	Vernal Pool	Critical Element	Landfill
VP-07	0.0163	Vernal Pool	Critical Element	Landfill
VP-08	0.0050	Vernal Pool	Critical Element	Landfill
VP-09	0.0137	Vernal Pool	Critical Element	Landfill
VP-10	0.0649	Vernal Pool	Critical Element	Landfill
VP-11	0.0033	Vernal Pool	Necessary Supporting Elements	SW Pond
VP-12	0.0173	Vernal Pool	Necessary Supporting Elements	SW Pond
VP-13	0.0061	Vernal Pool	Necessary Supporting Elements	SW Pond
VP-14	0.0158	Vernal Pool	Necessary Supporting Elements	SW Pond
VP-15	0.0327	Vernal Pool	Critical Element	Landfill
VP-16	0.0354	Vernal Pool	Critical Element	Landfill
VP-17	0.0283	Vernal Pool	Critical Element	Landfill
VP-18	0.0422	Vernal Pool	Critical Element	Landfill
VP-19	0.0027	Vernal Pool	Necessary Supporting Elements	SW Pond
VP-20	0.0044	Vernal Pool	Critical Element	Landfill
VP-24	0.0050	Vernal Pool	Critical Element	Landfill
VP-25	0.0147	Vernal Pool	Necessary Supporting Elements	SW Pond
VP-26	0.0043	Vernal Pool	Necessary Supporting Elements	SW Pond
VP-27	0.0100	Vernal Pool	Necessary Supporting Elements	SW Pond
VP-28	0.0082	Vernal Pool	Necessary Supporting Elements	SW Pond
VP-29	0.0063	Vernal Pool	Necessary Supporting Elements	SW Pond
VP-31	0.5498	Vernal Pool	Critical Element	Landfill
VP-32	0.0729	Vernal Pool	Critical Element	Landfill
VP-33	0.0460	Vernal Pool	Necessary Supporting Elements	Stormwater Pond
VP-34	0.0088	Vernal Pool	Necessary Supporting Elements	Stormwater Pond
VP-35	0.0028	Vernal Pool	Necessary Supporting Elements	Stormwater Pond
VP-36	0.0638	Vernal Pool	Necessary Supporting Elements	Stormwater Pond
VP-37	0.0991	Vernal Pool	Necessary Supporting Elements	Stormwater Pond
VP-38	0.0294	Vernal Pool	Necessary Supporting Elements	Stormwater Pond
VP-39	0.0530	Vernal Pool	Necessary Supporting Elements	Stormwater Pond
VP-40	0.0156	Vernal Pool	Necessary Supporting Elements	SW Pond
VP-41	0.0076	Vernal Pool	Necessary Supporting Elements	SW Pond
AP-01	1.3314	Agricultural Pond	Critical Element	Landfill

Plan Concept 0 Wetlands

Wetland ID	Acres	Wetland Type	Concept Element Category	Element Name
SW-42	0.0975	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-43	0.0413	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-44	0.0082	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-45	0.0019	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-46	0.0013	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-47	0.1179	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-48	0.0159	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-49	0.0528	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
VP-33	0.0460	Vernal Pool	Necessary Supporting Elements	Stormwater Pond
VP-34	0.0088	Vernal Pool	Necessary Supporting Elements	Stormwater Pond
VP-35	0.0028	Vernal Pool	Necessary Supporting Elements	Stormwater Pond
SP-1	0.2367	Seasonal Wetland (Pond)	Necessary Supporting Elements	Stormwater Pond
VP-36	0.0638	Vernal Pool	Necessary Supporting Elements	Stormwater Pond
VP-37	0.0991	Vernal Pool	Necessary Supporting Elements	Stormwater Pond
SW-50	0.0043	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
VP-38	0.0294	Vernal Pool	Necessary Supporting Elements	Stormwater Pond
SW-51	0.0501	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
VP-39	0.0530	Vernal Pool	Necessary Supporting Elements	Stormwater Pond
SW-52	0.0034	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond
SW-53	0.0059	Seasonal Wetland	Necessary Supporting Elements	Stormwater Pond

*Note: All Concept 0 wetlands are in the southern triangle area of the site

Legend
$: 0 \cdot$ Active Facility
:...: Survey Areas
\square WPWMA Properties

Aerial Imagery Sources:
Drone image flogern by Sources:
ESRI basemap inagery: NAP WMA 2016, 7110/2016
$\xrightarrow[\text { Feet }]{\substack{1,000}}$

FIGURE 2
Project Survey Areas
WPWMA Aquatic Resources Delineation Report Westerm Placeric Waste Management Authority Master Planning Project
Placer County, California

ch2m.

Legend
$\because:$ Active Facility
:..: Survey Areas
\square WPWMA Properties
USA National Hydrography Dataset

- Stream/River

National Wetlands Inventory
\square Freshwater Emergent Wetland
Riverine

Aerial Imagery Sources:

National Wetlands Inventory and
National Hydrography Dataset Features WPWMA Aquatic Resources Delineation Report Western Placer Waste Management Authority Placer County, Califormia

Suba City

FIGURE 5
Jurisdictional Wetlands and Other Aquatic Resources East Property WPWMA Aquatic Resources Delineation Report Western Placer Waste Management Authority Master Planning Project

Map Date:6/12/2018

Legend

- Sample Point
:.:- Survey Areas
\square WPWMA Properties
WPWMA Properties
\square Vernal Pool (1.25 acres)
Seasonal Wetland (0.97 acre)
Swale (4.88 acres)

Aerial Imagery Sources:
ond
Drone image flown by WPWMA, 2016
ESRI basemap imagery: NAAP 2016, 7/10/2016

FIGURE 6
Jurisdictional Wetlands and Other
Aquatic Resources Northwest Property WPWMA Aquatic Resources Delineation Report
Western Placer Waste Management Authonity Western Placer Waste Ma
Master Planning Project
Placer County, Califormia

Legend				
$-=\frac{\text { Excavated Drainage }}{(0.02 \text { acre })}$	WPWMA Properties			
	Irrigation Pond (2.		,	
Culvert	Irrigated Wetland		N	
$0:$ Active Facility	Swale (0.03 acre)	0	200	400
1.--: Survey Areas			Feet	

Appendix 4A-1
Design Documentation Site Beautification

Plan Concept 1 Quantities

Site Beautification (vegetation line):

Plan Concept 1 Quantities

Site Beautification (new fencing and gates):

Plan Concept 2 Quantities
Site Beautification (vegetation):

Plan Concept 2 Quantities

Plan Concept 2 Quantities
Site Beautification (fencing):

Plan Concept 2 Quantities

Appendix 4A-1
Design Documentation Site-wide Demolition and Disposal

Site-wide demolition:

From: Goodrich, Janet/SAC
Sent: Wednesday, October 31, 2018 1:48 PM
To: McRae, Jennifer/SJC; Lopez, Lyndsey/PDX
Subject:
FW : another question

Good news, looks like demo of the 60% or whatever you used is good, but should be for all options I believe, as it is not level with the good pad. Don't use the repair part, assume we demo on all 3

From: Keith Schmidt [mailto:KSchmidt@placer.ca.gov]
Sent: Wednesday, October 31, 2018 1:41 PM
To: Goodrich, Janet/SAC Janet.Goodrich@jacobs.com
Subject: [EXTERNAL] RE: another question
If you want them on the same plane (elevation), then you would have to demo because they are not close (ie. $3-6$ difference). If the location/elevation was fine, then I would probably spend $\$ 150-200 \mathrm{k}$ to repair the surface as needed.

The area I've marked for demo has seen a lot of repairs and wear, and it would need probably $\$ 150-200 \mathrm{k}$ in repair to make the surface condition good again.

Keith J. Schmidt, P.E. | Senior Civil Engineer | Western Placer Waste Management Authority | (Mail) 11476 "C" Ave. Auburn, CA 95603 | (Physical) 3033 Fiddyment Rd. Roseville, CA 95747 | (916) 543-3986 (Direct) | (916) 543-3990 (Fax)

From: Goodrich, Janet/SAC [mailto:Janet.Goodrich@jacobs.com]
Sent: Wednesday, October 31, 2018 1:27 PM
To: Keith Schmidt
Subject: RE: another question
This may make more sense, trying to decide if this area needs demolition before construction or if we can assume this pad stays. See the red part.

From: Goodrich, Janet/SAC
Sent: Wednesday, October 31, 2018 1:25 PM
To: Keith Schmidt KSchmidt@placer.ca.gov
Subject: another question
Just to verify. Is the existing C\&D area on the NEWer, S, good pad, meaning we can keep it or is it old pad that needs to be demolished regardless?

NOTICE - This communication may contain confidential and privileged information that is for the sole use of the intended recipient. Any viewing, copying or distribution of, or reliance on this message by unintended recipients is strictly prohibited. If you have received this message in error, please notify us immediately by replying to the message and deleting it from your computer.

Appendix 4A-1

Design Documentation Site Utilities

Site Utilities:

Plan Concept 2 Quantities
Site Utilities:

Appendix 4A-2
Capital Cost Estimates

Appendix 4A-2. Capital Cost Estimates

This subappendix contains the details of the capital cost workbooks that were prepared by the consulting team. Capital costs are organized by Plan Concept and then by site element.

The capital costs presented in these estimates are for initial build only; capital replacement costs are tallied in the Present Value Analysis (Section 4).

Appendix 4A-2 Capital Cost Estimates Plan Concept 0

Rough Order of Magnitude (Class 4) Cost Opinion
Renewable Placer - Waste Action Plan
Roseville, CA
Date: Oct-30-2018

Description	Qty	Unit	Unit Cost w/ Markup, Cont., \& Fee	Total Cost w/ Markup, Cont., \& Fee	Subtotals w/ Markup, Cont., \& Fee
Plan Concept 0 Critical Elements					\$319,213,050
Public Area					
Public Area - Roadways	1	LS	\$1,799,189	\$1,799,189	
Public Area - Buyback (220 x $230{ }^{\prime}$)	1	LS	\$2,655,780	\$2,655,780	
Public Area-HHW ($300{ }^{\prime} \times 100^{\prime}$)	1	LS	\$1,787,519	\$1,787,519	
Public Area - Reuse Store Area (155' $\times 140$ ')	1	LS	\$1,909,078	\$1,909,078	
Public Area - Tipping Area	1	LS	\$8,856,534	\$8,856,534	
C\&D					
C\&D - C\&D Pad ($1000{ }^{\prime} \times 530^{\prime}$)	1	LS	\$10,175,809	\$10,175,809	
C\&D - Processing Line	1	LS	\$7,922,881	\$7,922,881	
Composting					
Compost - Green Waste Pad ($\left.210^{\prime} \times 225^{\prime}\right)$	1	LS	\$1,404,545	\$1,404,545	
Compost - Wood Waste Pad (115' $\times 225$)	1	LS	\$769,156	\$769,156	
Compost - Outdoor Receiving Area ($90^{\prime} \times 200{ }^{\prime}$)	1	LS	\$2,462,377	\$2,462,377	
Compost - Screening and Product Storage Pad ($400{ }^{\prime} \times 350{ }^{\prime}$)	1	LS	\$5,932,451	\$5,932,451	
Compost - Temporary Positive ASP System		LS	\$470,829	\$470,829	
Compost - Active Composting System (205' x 880')	1	LS	\$14,811,623	\$14,811,623	
Compost - Biofilter ($135^{\prime} \times 880{ }^{\prime}$)	1	LS	\$5,122,623	\$5,122,623	
Compost - ASP Curing System ($185{ }^{\prime} \times 880$ ')	1	LS	\$12,196,234	\$12,196,234	
Compost - Dedicated Storm Water Ponds	1	LS	\$1,057,713	\$1,057,713	
Compost - Miscellaneous Equipment	1	LS	\$12,409	\$12,409	
Landfill					
Stockpile Relocation	1	LS	\$40,091,688	\$40,091,688	
Landfill Construction	1	LS	\$54,214,085	\$54,214,085	
Unlined Area Waste Excavation	1	LS	\$102,344,916	\$102,344,916	
Landfill Closure	1	LS	\$43,215,610	\$43,215,610	
Plan Concept 0 Necessary Supporting Elements					\$20,114,766
Admin					
Admin Staff Bldg (5,000 sf or $50{ }^{\prime} \times 100^{\prime}$)	1	LS	\$6,310,623	\$6,310,623	
Admin Staff Parking (10,000 sf)	1	LS	\$74,376	\$74,376	
Main Entrance					
Main Entrance - Roadways	1	LS	\$802,788	\$802,788	
Main Entrance - Scale/Building	1	LS	\$1,548,557	\$1,548,557	
Western Entrance					
Western Entrance - Roadways	1	LS	\#N/A	Not included in concept	
Western Entrance - Scale/Building	1	LS	\#N/A	Not included in concept	
Overpass					
Overpass	1	LS	\#N/A	Not included in concept	
Recovered Materials Storage					
Recyclables Storage Building	1	LS	\$8,281,730	\$8,281,730	
Primary Maintenance Facility					
Primary Maintenance - Maintenance Area (250' x 300')	1	LS	\$1,842,538	\$1,842,538	
Satellite Maintenance and Staff Facility					
Satellite Maintenance and Staff - Maintenance Area ($250^{\prime} \times 300^{\prime}$)	1	LS	\#N/A	Not included in concept	
Satellite Maintenance and Staff - Staff Bldg and Parking Area (100' x 220')	1	LS	\#N/A	Not included in concept	
Stormwater Pond					
New Storm Water Ponds	1	LS	\$1,254,153	\$1,254,153	
Plan Concept 0 Non-Critical Elements					\$0
Main Site HHW Facility					
Plan Concept 0 Existing Features to be Removed					\$217,629
Compost Pond Removal Compost Pond Removal	1	LS	\$217,629	\$217,629	
Plan Concept 0 General Elements					\$12,704,494
Special Permits and Allow					
Special Permits	1	LS	\$4,423,996	\$4,423,996	
Geotechnical Investigations	1	LS	\$60,000	\$60,000	
Wetlands Mitigation					
Wetlands Mitigation	1	LS	\$987,453	\$987,453	
Site Beautification					
Facility Beautification	1	LS	\$889,230	\$889,230	
Site-wide Demolition					
Site-wide Demolition and Disposal	1	LS	\$2,866,952	\$2,866,952	
Site Utilities					
Shared Site Utilities	1	LS	\$3,061,096	\$3,061,096	
MRF Upgrade to TS					
MRF Upgrade to TS	1	LS	\$415,766	\$415,766	
Total Probable Cost				\$352,249,939	\$352,249,939
			Total Probable Cost		\$352,250,000
			Low Range	-30\%	\$246,575,000
			High Range	50\%	\$528,375,000

Renewable Placer - Waste Action Plan

Roseville, CA

Date: Oct-30-2018

Common Construction Unit Rates	$\begin{aligned} & \text { Unit } \\ & \text { Cost } \end{aligned}$	Unit	Variable	Notes
Earthworks, Pads and Roadways				
Strip topsoil (12" deep) and stockpile onsite	\$1.30	SY	topsoil_strip	Assumes stockpile along west property boundary, scraper haul
Fine grade site, machine	\$1.20	SY	finegrade	MEANS 312216
Common excavation to Stockpile (2' deep)	\$3.90	CY	common_ex	MEANS 3320 15, Assume stockpile along west property boundary
Subgrade preparation	\$1.30	SY	subgrade_prep	
Granular sub-base (3" minus, 6 " thick)	\$7.30	SY	gran_subbase	CALTRANS Historical 260203
Granular base (DGA, 12 "thick)	\$36.00	CY	gran_base	CALTRANS Historical 260303
Curb and gutter	\$14.00	LF	curb_gutter	MEANS 321613
Asphalt paving (9" thick)	\$65.00	SY	asphalt	CH2M estimate
Roadway/Perimeter Ditching	\$1.50	LF	ditching	Grader/dozer work
Environmental Protection				
Clay liner (0.5 m thick)	\$3.40	SF	clay_liner	CH2M Estimate \$55/cy, 20" thick
Groundwater monitoring wells	\$7,500.00	LS	GW_wells	CH2M Estimate (3 wells to 30 ft , casing protector)
Synthetic pond liner (supply and install)	\$6.30	sy	HDPE_liner	CH2M Historical, 40 mil
Buildings and Concrete				
Strip Footing (2^{\prime} 'thick, 3^{\prime} wide)	\$176.00	LF	strip_footing	0.22 cy per LF
Push Wall Footing (2 'thick, 8^{\prime} wide)	\$570.00	LF	push_wall_footing	0.6 cy per LF
Push Walls (12' high, 12' thick at top, 18" thick at base)	\$600.00	LF	push_wall	0.6 cy per LF
Slab-on-Grade concrete floor (8")	\$12.00	SF	concrete_slab	after verbal discussions with local contractor
Utility Connections				
Potable water connection	\$0.00	LF		
Sanitary sewer connection	\$0.00	LF		
Electrical tie-in to transformer	\$75.00	LF	buried_elec	450 KVA total connected load/ 300 KVA operating demand
Telecom connection	\$0.00	LF		
Natural gas connection	\$0.00	LF		
Markups and Fees	Rate	Unit	Variable	Notes
Contractor Mob and General Conditions				
Contractor Home Office	5.0\%		CHO	Assumes multi-trade GC does most all of the work
Contractor General Conditions	8.0\%		CGC	Assumes 12 month construction schedule
Contractor Fee	8.0\%		CF	
Project Bond/lnsurance	2.6\%		PBI	
Mobilization/Demobilization	3.0\%		Mob_Demob	
Contingencies:				
Facility design allowances based on level of design	25\%		design_cntngy	
Market adjustment factor	5\%		MAF	Construction market is very busy
Consultant and Subcontractor Fees:				
Engineering design and municipal permitting fee	8.0\%		Eng_fee	
Construction management fee	8.0\%		CM_fee	
Estimate Ranges:				
Low Range	-30\%		low_range	
High Range	50\%		high_range	

Notes:
The cost estimates are based on 1st quarter 2016 rates from the CALTRANS historical costs (concrete and import fill), MEANS (earthwork), CH2M historical values, Golder historical values, and calculated values where indicated. Cost estimates are largely based on 2016/2017 values because cost development commenced in 2017, prior to Board meeting in Dec 2017. A CH2M/Jacobs cost estimator has been involved in the review process
2 These AACEI Classification Class 4 cost estimates are assumed to represent the actual total installed cost within the range of -30 percent to +50 percent (\% based on AACEI) of the cost indicated.
3 The estimate is prepared with due diligence with the available information and under normal operations. However this should be subject to market demands and circumstances. The possibility of securing a competive bid process is questionable and should be taken into consideration
4 Factors that may affect the estimate on the following issues include escalation, premium on labor, engineering
5 The final cost do the project will be subject to labor rates, material cost, actual site conditions, availability of labor, material and equipment, final project scope, final project schedule (flexible or fixed), public consultation and input, and other mitigating factors (e.g. timing of construction and award). As a result, the final project cost may defer from the presented budget. Due to facts mentioned, the funding of the project should be carefully reviewed prior to establishing the final budget.
6 It is assumed that there is no hazardeous materail to remove and dispose
7 It is assumed that the work will performed under a 40-hr, normal workweek schedule. No acceleration costs included..
8 It's assumed that all materials are readibly available at no premium costs, that delivery is normal costs, and the contractor has adequate laydown and site facilities.

Exclusions/Qualifications:

Equipment specifications not identified
Federal and state sales tax are included in unit rates.
3 Municipal fees \& licences not included
4 As the design is at conceptual stage, the tie-ins to existing equipment and facilities have not being identified
5 Rock excavation not included
6 Dewatering is not included
7 Escalation is not included. Values are in 1st Qtr 2016 value

Description	aty	Unit	$\underbrace{\text { Cost }}_{\text {Unit }}$	${ }_{\substack{\text { Total } \\ \text { cost }}}^{\text {cosen }}$	Subtotals	$\begin{gathered} \text { Total Cost w/ } \\ \text { Markup, Cont., \& Fee } \end{gathered}$	$\begin{gathered} \text { Subtotals wl } \\ \text { Markup, Cont., \& Fee } \end{gathered}$	${ }^{\text {Notes }}$
C8D-C8D Pad ($1000^{\circ} \times 530^{\prime}$)					\$5,330,082		\$10,175,809	
Earthorks, Pads and Roadways Strip opsoil (12 deep) and stockpile onsite	55.889	sY	\$1.30	576.56		\$146,155		
Fine grade site, , machine	${ }_{56,889}^{50,69}$	sr	\$1.20	${ }_{\text {S70,667 }}$		\$134,912		
Common excavation to Stockpile (2'deep)	50,889	cr ${ }_{\text {cr }}^{\text {sr }}$	¢	\$70,556		S146,155		
Granular sub-asase (3" minus, $6^{4 \prime}$ thick)	${ }_{0}$	cr	\$36.00	${ }_{50}$				
Granular base (DGA, $12^{\prime \prime}$ thick)	2,181	Cr	836.00	\$78.519		\$149,902		
Curb and outter ${ }_{\text {Asphat }}$ (9xing thick)	${ }_{58,889}$	$\stackrel{\text { LF }}{\text { sr }}$	$\$ 14.00$ 865.00	${ }_{\text {S3, }}^{\text {s22,785 }}$		s7,307,732		
RooadwayPerimeter Ditching Alowance for aspholt removal	\%	$\stackrel{\text { LF }}{\text { LS }}$		so		So		
Overang Roof $\begin{gathered}\text { Overimang with structural column support (no wals) }\end{gathered}$	20,000	sF	\$60.00	\$1,200,000		\$2,290,954		Assume cover for $100^{\prime} \times 200^{\prime}$ portion of C\&D pad to shield processing line from rain; not a building, just an open-air roof structure
Environmental Protection Clay liner	\bigcirc	$\stackrel{\text { sF }}{\text { LF }}$	$\$ 3.40$ $\$ 7.500 .00$	so ${ }_{\text {so }}$		so ${ }_{\text {so }}$		
C8D- - 40 Pocessing L Line					\$4,150,000		s7,92,881	
Processing line, includuing shipping, instalation, and statup	1	EA	\$4,000,000.00	\$4,000,000		\$7,63,512		Bukk Handiling Quote, Sept 2018
Utility Connections								
Potable water connection	${ }^{2}, 000$	$\stackrel{\text { LF }}{\text { L }}$	S0.00 50.00	\$0		so		Assume can use for rocoess water and potable use
Sane	2,000	LF	${ }_{\text {\$75.00 }}$	\$150,000		\$286,369		Assume electrical supply is present for exising C\&D and can use this with extension
Telecom connection Natural gas oonnection	0	$\stackrel{\text { LF }}{\text { LF }}$	\$80.00	¢ ${ }_{\text {so }}^{\text {so }}$		So ${ }_{\text {so }}^{\text {so }}$		
Subtalal				\$9,480,082		S18,098,690	S18,098,690	
$\frac{\text { Contractor Markup and General Conditions }}{\text { Contracoro tom onfrice }}$					\$2,521,702		10,00,000	
			${ }_{8.0 \%}^{5.0 \%}$					
Contractor Fee			${ }^{8.0 \%}$	\$758,407				
Project Bondl/ nsurance			2.6\%	${ }_{\text {S226,482 }}$				
Mobilization/Demobilization			3.0\%	\$284,402				
Probable Construction Cost					\$12,001,784			
					\$3,60,535			
Fracilit design alowences based on level of design	1	${ }_{\text {Per }}^{\text {PER }}$	${ }_{5 \%}^{25 \%}$					
	1	${ }_{\text {PeR }}^{\text {PeR }}$	0\%	${ }_{\substack{\text { S600,089 } \\ \text { so }}}$				
Consultant and Subcontractor Fees					\$2,496,371			
Allowance for feotechnical investigation	${ }_{1}$	$\stackrel{\text { LS }}{\text { LS }}$	$\xrightarrow[\substack{\text { S30.00.00 } \\ \text { S0.00 }}]{ }$	${ }_{\text {s }}^{50}$				Assume 2 geotech investigation allowances per parcel.
Engineering design and municipal permiting fee	1	${ }_{\text {Per }}^{\text {Per }}$	8.0\%	${ }_{\substack{\text { a }}}^{\$ 1,248,185}$				
Construction management fee		PER	8.0\%	\$1,248,185				
			Total Probable Cost					
			$\underset{\substack{\text { Low Range } \\ \text { High Range }}}{\text { Len }}$	-30\%	$\$ 18,099,000$ $\$ 27,149,000$			

Roseville, CA
Date: Oct-30-2018

Dosesifition	ay	Unit	$\underset{\substack{\text { Unit } \\ \text { cost }}}{\text { coser }}$	$\substack{\text { Toat } \\ \text { cost }}$	Subtorals			${ }^{\text {Notes }}$
Compost Temporay Postitive ASP Ssstem					${ }^{524,620}$		S470,829	
Aeation laterasheeseder								
	${ }_{15}^{200}$	${ }_{\text {E }}^{\text {LF }}$				${ }_{\substack{\text { s90.588 } \\ 55,57}}$		
		EA		cisisize		(sa3039		Hoper
Aeration riser piping (6 " SDR17, 26 per lateral, 12 " per riser) In-slab SS aeration grates (supply)	${ }_{910}^{910}$	$\stackrel{\text { Les }}{\text { E }}$	(ssise	cisisisi		$\begin{aligned} & \$ 45,87 \\ & \$ 66949 \\ & \$ 692 \end{aligned}$		HDPE quotes received from Wolseley 12/9/16 Historical Price
Latearaleadees wediding and instalaion								30\%\% ofauimenert ost
Aeation Menito and and								
SS manifold (24") (1 per aeration zone) S my fitting and 45 degree fitlin	$\begin{gathered} 200 \\ 5 \\ 5 \end{gathered}$	$\begin{gathered} \text { LeA } \\ \text { EAB } \\ \hline \text { EA } \end{gathered}$		$\begin{aligned} & \$ 13,000 \\ & 575.500 \\ & 5,375 \end{aligned}$		$\$ 24,819$ $\$ 14,318$ $\$ 6.25$		Ecco Supply Quote, converted to $\$$ US at 1.2 exchange rate GMT quote Mar-13-2016 Ecc Suply Qute converted to SUS at 12 exchange rate
	${ }_{4}^{200}$	${ }_{\text {LF }}^{\text {LF }}$	${ }_{\substack{\text { S } \\ \text { ST50,000 }}}$	cistisiono		¢		Hisiorial Oest - Crs
	1	${ }_{\text {EA }}^{\text {EA }}$		cis				
SS wye-fitting and 45 degree fitting VFD (supply)	$!$	${ }_{\text {E }}^{\text {EA }}$		$\begin{gathered} \text { S} 9.050 \\ 5050 \end{gathered}$		$\substack{\$ 1,250 \\ \$ 0 \\ \$ 0}$		Ecco Supply Quote, converted to \$US at 1.2 exchange rate incl in I\&C
					s7,756,39		S14,811,623	
	22.045	s\%	${ }^{51.30}$	520.59		${ }^{549,749}$		
	$\underbrace{2}_{\substack{20.045 \\ 1,085}}$	cros	Sti.			$\underbrace{\text { S }}_{\substack{\text { S45,922 } \\ \text { S11,55 }}}$		
	${ }^{20,045}$	${ }_{\text {cr }}^{\text {cr }}$	(${ }_{\substack{\text { S26,059 } \\ \text { so }}}^{\text {S20, }}$		S499799		
	${ }_{7}^{722}$	$\substack { \text { cre } \\ \begin{subarray}{c}{\text { cr }{ \text { cre } \\ \begin{subarray} { c } { \text { cr } } } \end{subarray}$						
(e)	${ }^{20.045}$	¢	cos					Free pauig beause ssphat o o
Peimeter Wals nad fior				5336000				
	${ }_{\substack{40,00 \\ 470}}$	$\underset{\substack{\text { cie }}}{\substack{\text { che }}}$	cistision			cis		
Araion haeasasheader								
Aeration header piping ($18^{\prime \prime}$ SDR17, 5 zones, 40^{\prime} per zone) Allowance for misc header fittings (3 per zone)	200 415 4725			cism		(istisi		HDPE quotes received from Wolseley 12/9/16 Engineer estimate
	${ }_{\substack{4725 \\ 980}}^{\substack{170}}$	唇		cis				Horeme
Aeration riser piping (6 " SDR17, 26 per lateral, 12" per riser) In-slab SS aeration grates (supply) Latera/header welding and installation	$\underbrace{910}_{1}$			cis				HDPE quotes received from Wolseley 12/9/16 Historical Price 30\% of equipment cost
Aeation Marifid and Fans								
	${ }_{5}^{200}$	Le		Sis,				
	${ }_{200}$	$\stackrel{\text { EA }}{\text { Le }}$						
	${ }_{1}^{4}$	Lse				cisint		ERyineer esimate
	1	¢				cis		
	1	$\stackrel{\text { ea }}{\text { cis }}$	Sis.on			S25,365		
Instumen and Controls						${ }^{5124093}$		
	${ }^{10}$	${ }_{\text {EA }}^{\text {EA }}$		¢ 53.250		Stios		Reoemp probe @ ind 100 twiwe, insonotal ost
						${ }^{\text {s13,746 }}$		cost
	${ }_{1}^{15}$	EA	Sissoo			Stile		
	200	${ }_{\substack{\text { Lis } \\ \text { Le }}}^{\text {cos }}$						
	1	${ }_{\text {EA }}$		Stis		Stis		
$\xrightarrow{\text { asp }}$ - -same as aspl	1	$\stackrel{15}{15}$	$\$ 1,221,826.28$ $\$ 1,221,826.28$	\$1,221,826		\$2,332,623		
Uuily Conenetions								
	\bigcirc	$\stackrel{\text { LF }}{\text { L }}$	Sos	som		so		
	0	$\stackrel{4}{\text { L }}$	(isso.	(so		so		
					S2,683.27		55,122.63	
chen	13220 13200 10	sv	${ }_{\substack{\text { si, } \\ 800}}$					
	(13200	cic		Stis.00		(33.241		
	(13200	cos	(isteo			(382761		
	489	$\stackrel{\text { cre }}{\substack{\text { cre } \\ \text { L }}}$	cisco	Siltsoo		${ }_{\substack{533601}}^{\text {sin }}$		
	${ }_{13,200}$	$\stackrel{\text { sit }}{\substack{\text { LV }}}$		${ }_{\text {Sl }}^{\text {S1,782000 }}$				Assume concrete eaving beause ssphat to atalued for compost toeations.
	${ }^{80}$	EA	s.00	so		so		S150block $\mathbf{8 2 5 b}$ bock placement
Allunane tor mists sambers								
	:	${ }_{\text {Lis }}$	Sose	so		${ }_{\substack{\text { so } \\ \text { so }}}$		
		$\stackrel{L}{L}$		Stis.				
	${ }_{40}^{200}$	正	(sission	(issis				
	$\substack{4.200 \\ 4200}_{\substack{0}}$	¢						HDPE uvoeses reeived foom Wossely 12916
cill	4, 4	¢						
	4.444		S25.500000					
								Stoff material
HDPE drain line (4") to a/g leachate tank with sand bedding U/G fibreglass storage tank (incl bured concrete supports, straps, backfill) Allowance for float level/strobe alarm	:	$\underset{\substack{\text { Lis } \\ \text { Lis }}}{\text { Lis }}$	So.	¢0		so		
Ss			cois	${ }_{50}$		so		Ander
Biofilter 2 - same as Biofilter 1 Biofilter 3 - same as Biofilter 1 Biofiter 4-same as Biofit	1	(is	206,491.64 \$206,491.64 206,491.64	$\$ 206,492$ \$206,492		\$394,219 $\$ 394,219$ $\$ 394,219$ \$394,2		
Enviommenala Procection								
$\underset{\substack{\text { chay lines } \\ \text { Grunuwater montioring wels }}}{ }$	i	$\underset{\text { cis }}{\substack{\text { sF }}}$	ST,50000	s\%.500		Stian		
					s, 5 ,88, 330		\$12,19, 2 , 24	
			${ }_{81,30}^{51,30}$					
	18,099	cos		(in		cistisi		
	18009	cr		52,		Stiso		
cien	${ }^{670}$	ck		cis ${ }^{\text {S24,19 }}$				
	${ }_{1}^{18,089}$	$\stackrel{\text { sr }}{\substack{\text { SY }}}$	$\underbrace{}_{\substack{\text { s.13,50 } \\ s .150}}$	${ }_{\text {s2 }}^{52}$		$\underset{\substack{\text { s4, } \\ \text { sos }}}{\text { sin }}$		
Aspl:								
	$\underbrace{}_{\substack{19,900 \\ 396}}$	$\underset{\substack{\text { sF }}}{\text { LF }}$	stivoo	$\underbrace{}_{\substack{\text { S225,200 } \\ 52250}}$				
Asp peimeineer waveris	${ }_{396}^{336}$		Scoioc					
				${ }_{\text {Stas, }}^{54}$				HopE aubes reeived foom Wossey 129916
	${ }_{\substack{15 \\ 3 \\ 7 \\ 7 \\ 7}}$	$\stackrel{\text { EA }}{\text { E/ }}$	¢	cis		cis		
Als	(700		(ist	cosk				
								Hismoran
Aeation Maniold and Eans								
	${ }_{5}^{5}$			Stisoo				GMT quote Mar-13-2016 Ecco Supply Quote, converted to \$US at 1.2 exchange rate
	$\stackrel{200}{2}$		Stis	Stion		(sitich		Historical Cost - CTS Engineer estimate
Pestive aeatio fan (suppy)	!	${ }_{\text {EA }}^{\text {EA }}$	Sspomo	ssomo		S17,182		Aisss Suute (NYE 2061).
	:		cissision	so		so		
Laiearineadefran insalalion			S4,69300	S4,693		s8.50		20% oreauipment ost
Mstument nend Contross								
	${ }_{0}^{10}$	${ }_{\text {EA }}^{\text {EA }}$	${ }_{\substack{58305000 \\ \text { siscoo }}}$	cisisiso				
Allunene ora			S7,20000	St,20		${ }^{13,746}$		Historical cost (3 days 2.2 man crem)
Alowance for misc fittings Underground precast leachate sump (30 " $\times 30$ " $\times 42^{\prime \prime}$ deep with cover) SS submersible pump (1 hp) with flex hose connection	$\begin{gathered} 200 \\ 15 \\ 1 \\ 1 \end{gathered}$	$\begin{aligned} & \text { LF } \\ & \text { EA } \\ & \text { LS } \end{aligned}$				$\begin{aligned} & \$ 1,283 \\ & \$ 12148 \\ & \$ 688 \\ & \$ 2,64 \\ & \$ 2, \end{aligned}$		istoric estimate Historical Price

Roseville, CA
Date: Oct-30-2018

Dessription	aty	Unit	$\underbrace{\text { Cost }}_{\text {Unit }}$	Total cost	btotal	Total Cost w/ Markup, Cont., \& Fee	Subtotals wl Markup, Cont., \& Fee	${ }^{\text {Notes }}$
Aboveground leachate transfer piping (4" PVC) Aboveground HDPE leachate tank (10,000 gal) Lateral/header/fan installation	$\begin{gathered} 200 \\ 1 \\ 1 \end{gathered}$	$\begin{gathered} \text { LF } \\ \text { EA } \\ \text { LS } \end{gathered}$	$\begin{gathered} 58.00 \\ \substack{57,50000 \\ 52,309.40} \end{gathered}$	$\begin{gathered} 4900 \\ \substack{47500 \\ \hline 2,200} \end{gathered}$				Historical Price Historical Price 20\% of equipment cost
ASP 2 - same as ASP1 ASP 3 - same as ASP1 ASP 4 - same as ASP1	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & \text { Ls } \\ & \text { LS } \\ & \text { Ls } \end{aligned}$	\$947,439.44 \$947,439.44 \$947,439.44	$\begin{aligned} & \$ 947,439 \\ & \$ 947,439 \end{aligned}$ $\$ 947,439$		\$1,808,783 \$1,808,783 \$1,808,783		
Utility Connections Potable water connection anitary sewer connection Telecom connection Natural gas connection	$\begin{gathered} 0 \\ 0 \\ 750 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \mathrm{LF} \\ & \mathrm{LF} \\ & \mathrm{LF} \\ & \mathrm{~L} \\ & \mathrm{LF} \end{aligned}$	$\begin{aligned} & \text { So.00} \\ & 50.00 \\ & \text { s75.00 } \\ & \text { So.00 } \\ & \hline 0.00 \end{aligned}$	$\begin{gathered} \text { so } \\ \text { so } \\ \text { s56.250 } \\ \$ 0 \\ \$ 0 \\ \text { so } \end{gathered}$		$\begin{gathered} \text { so } \\ \text { so } \\ \text { s107,388 } \\ \text { so } \\ \text { so } \end{gathered}$		
Environmental Protection Clay liner Groundwater monitoring wells	${ }_{1}^{0}$	$\stackrel{\text { SF }}{\text { LF }}$	$\begin{gathered} \text { S3,40 } \\ \$ 7,50.00 \end{gathered}$	s7,500		S14,318		
Compost - Dedicated Storm Water Ponds					\$554,030		\$1,057,713	
Pond Construction								$\begin{aligned} & \text { Source: Pon } \\ & \text { year storm } \end{aligned}$
Project Management Desig	1	$\stackrel{\text { Ls }}{\text { LS }}$	$\$ 15,000.00$ \$100,000.00	$\$ 15,000$ \$100,00		${ }_{\substack{\text { S2,637 } \\ \$ 190,913}}$		
Mob and Demob	1	Ls	\$15,000.00	\$15,000		${ }_{\text {\$28,637 }}$		
Unload Geosynthetics	1	Ls	\$20,000.00	\$220,000		${ }_{\text {S }}^{538,183}$		
Claering and Grubing	20,144	sY	\$1.30	\$226,188		${ }_{\text {\$44,996 }}$		
Excavaion $\begin{aligned} & \text { HPPE Double-Sided Textured Geomembrane }\end{aligned}$	312241 182,50	$\mathrm{Sr}_{\mathrm{Cr}}^{\mathrm{Cr}}$	\$2.50 $\$ 1.60$	¢		$\underset{\substack{\text { \$149,106 } \\ \$ 557,924}}{\text { S }}$		
Environmental Protection Clay liner Groundwater monitoring wells	${ }_{1}^{0}$	$\stackrel{\text { SF }}{\text { LS }}$	$\begin{gathered} 53.40 \\ 57,500.00 \end{gathered}$	s7,500		(14,318		
Compost- Miscellaneous Equipment					S6,500		\$12,409	
Weather station (roof mounted ontripod) Aboversuoud 2 2-walled 9500 fuel storage tankpump	1	${ }_{\text {EA }}^{\text {EA }}$	S11.5000000	${ }_{\substack{\text { S1,500 } \\ \text { so }}}^{\text {coin }}$		${ }_{\substack{52,864 \\ \text { so }}}^{\text {col }}$		
	1	Ls EA	S5.000.00	S55000		59.546		
Subtotal				\$17,637.074	S17.637.074	533.677.432	S33671432	
Contractor Markups and General Conditions					\$4,691,462		\%	
Contractor Home Office			5.0\%	\$881,854				
Contrator General Conditions Contractor fee			${ }^{8.0 \% \%}$	$\xrightarrow{\$ 1,410,966} \begin{aligned} & \$ 1,10,966\end{aligned}$				
Proiect Bondilnsurane Mobilization \mathbf{L} mobilization				(${ }_{\text {S455,564 }}$				
Probable Construction Cost					522,328,536			
Contingencies					\$6,69,561			
Facility design allowances based on level of design Marke adiustment factor		${ }_{\text {Per }}^{\text {Per }}$	${ }^{25 \%}$					
$\substack{\text { Marcela adisstment tactor } \\ \text { Escalaion }}$	1		0\%	$\underset{\substack{\text { \$1, 11, } 6,427 \\ \$ 0}}{ }$				
$\frac{\text { Consultant and Subcortractor Fees }}{\text { Alowance oro }}$								
	${ }_{1}^{0}$	${ }_{\text {LS }}^{\text {LS }}$	${ }_{\substack{\text { S30,000.00 } \\ \text { s0.00 }}}$	${ }_{\text {so }}^{50}$				Assume 2 geotech investigation alowances per parcel.
Engineering design and municipal permititing feeConstuction management fee	1	${ }_{\text {Per }}^{\text {Per }}$	8.8.0\%	$\underset{\substack{\text { S2, 32, } 168 \\ \$ 232168}}{ }$				
				32,32, 168				
			Total Probable Cost		\$33,672,000			
				- ${ }_{\text {-30\% }}$	$\$ 23,571,000$ $\$ 50,508,000$			

Doscripion	aty	Unit	$\underbrace{\substack{\text { unit }}}_{\text {cost }}$	$\underset{\substack{\text { roat } \\ \text { cost }}}{\text { cost }}$	Subtat		Sumbotas wim	
Recylablest Sorase eisulding					\$4,33,7,96		S8,28,7,30	
	\bigcirc	${ }_{\text {sV }}^{\text {sV }}$	¢1,30	${ }_{50}^{50}$		${ }_{\text {so }}$		
	$\substack{1.30 \\ 600}_{\substack{\text { a }}}$	cor		Stis				
comer	0	${ }_{\text {cr }}$	S3800	50		so		
Cuthen	60	$\stackrel{\text { cren }}{\substack{\text { sr }}}$		\%		some		
	0	${ }_{\text {Lis }}^{\text {LF }}$	Sis.0.50,	Stio.		S19091		ngtemoval ofexsising sasplat. isposal onsite
Storase iuliding (175 \times x00)								
	7i,	${ }_{\substack{\text { sF } \\ \text { sF }}}^{\text {cher }}$	cistition	cis		cois		
Liole	70,000	${ }_{\substack{\text { sF } \\ \text { SFe }}}^{\text {sfe }}$	cisisio					MEANS D5520 115, 05220210
Mornd	$\stackrel{7}{7}$	${ }_{\text {SFe }}^{\text {SEA }}$	Stisision	Stition		sseifire		
	70.000		ciol	Skilicoo				Hisens ioflo
Alowno forsechityssem	\bigcirc	${ }_{\text {L5 }}^{15}$		so		so		
	:		Sill	${ }_{\text {so }}^{50}$		${ }_{\text {so }}^{\text {so }}$		Hessorial Ssost
Uuiliy Connexions								
	1.00	$\stackrel{\text { LF }}{\stackrel{\text { LF }}{\sim}}$	(siols	(is		cois		
	\%		(sion	cois		cois		Inclin staff building
Enviommenal Procection								
$\underset{\substack{\text { Clay liner } \\ \text { Grunuxaer montoring wels }}}{ }$:	${ }_{\text {LF }}^{\text {SF }}$	ST,50000	${ }_{\substack{50 \\ 50}}$		so		
				S4,37.965		S8,281,730	S8,28,7,30	
			(20\%	S130, 39				
Probable construction cost					55,991,864			
Coningencies					\$1,677,59			
Facility design allowances based on level of design Market adjustment factor Escalation	1	(ekR	$\begin{aligned} & 25 \% \\ & 0 \% \\ & 0 \% \end{aligned}$					
Consultan and subcontratere Feas					S1,1423,38			
	1	-	soiouo	so				Assume 2 geolectivestigation alownexes per parcel.
	1	${ }_{\substack{\text { PeR } \\ \text { PeR }}}$						
			$\begin{array}{r} \text { Total Probable Cost } \\ \text { Low Range } \\ \text { High Range } \end{array}$	${ }_{\text {cosem }}^{50 \%}$				

Description	aty	Unit	$\underbrace{\text { Cost }}_{\text {Unit }}$		btotal	Total Cost wl Markup, Cont. $\&$ \& Fee	Subtotals w/ Markup, Cont., \& Fee	${ }^{\text {Notes }}$
Primary Maintenance - Maintenance Areal $250^{\circ} \times 300^{\circ}$)					\$965,120		\$1,84, 538	
Stirio topsoil (12" deep and stoctokpile or	0	sY	51.30	so		so		
Fine grade site, , machine	0	sy	\$1.20	${ }_{50}$		so		
Common excavation to Stockpile (2'd deep)	\%	cr ${ }_{\text {cr }}$	S3.90 si.30	so ${ }_{\text {so }}^{\text {so }}$		so		
Granular sub--asese (3" minus, 6 " thick)	0	cr	\$36.00	so		so		
Granuar base (DGA, $12^{\prime \prime}$ thick)	0	Cr	S36.00	so		so		
${ }_{\text {Curb and outer (}}^{\text {Asphat paving (9 thick) }}$	-	SY	514.00 S65.00	so		so		
RooawwyyPrerimeter Ditching	0	LF	\$1.50	so		so		
Alowance for ashphalt removal	1	Ls	875,000.00	\$75,000		\$143,185		Cutingremoval of exisiting asphatt. Disposal onsite.
$\underset{\substack{\text { 4-Bay Builing (750 } \\ \text { Stio Footing }}}{\text { (160) }}$				${ }^{882.720}$				
Stirib-ootings Slade concrete floor ($8^{\prime \prime}$)	12,000	$\stackrel{\text { LF }}{\text { sF }}$	${ }_{\text {S17200 }}^{\$ 17.00}$	${ }_{\text {S }}^{\text {S } 144,000}$		${ }_{\substack{\text { s }}}^{\text {s157,923 }}$		
Pre-Engineered Meatal Building wsisid walls	${ }^{12,000}$	SF	S35.00	\$420,000		\$801, 834		
Lighting, Conduit, Wire \& Receeptacas	12,000 150 150	SF	S5.70	Scisi,400		\$130.584		MEANS D5020 115, D5020 210
Man doors	7	EA	S22000.00	\$14,000		\$26,728		
	12,000	SA	${ }_{\substack{\text { S11,00.00 } \\ \$ 3.00}}^{\text {S }}$	S34,000 $\$ 80$		¢		$\xrightarrow[\substack{\text { Histarical cost } \\ \text { MEANS } \\ 04010}]{ }$
Allowance for securits system	0	${ }^{15}$	\$0.00	\$0		So		
Allownanee for warehuse shelving	1	Ls	\$20,000.00	\$20,000		${ }_{\text {s38,183 }}$		Historical cost
Aboveground $2 \times$-walled 9500 L fuel storage tankpump	2	EA	\$11,000.00	\$22,000		\$42,001		\$9500 purchase + \$1500 allowance for delivery/install
Utilit Connections								
Potable water connection	${ }_{0}$	$\stackrel{\text { LF }}{\text { LF }}$	ss0.00	${ }_{\text {so }}^{\text {so }}$		${ }_{\text {so }}^{\text {so }}$		
Electrical tiein to transormer	250	LF	\$75.00	\$18,750		535,796		
- Telecom connection Natura gas connection	${ }_{0}$	$\stackrel{\text { LF }}{\text { LF }}$	\$80.00	so		so		Incl in starf building
Environmental Protection								
$\underset{\substack{\text { Clay liner } \\ \text { Grundwater monitoring wells }}}{\text { a }}$	0	$\stackrel{\text { SF }}{\text { LS }}$	S3.40 $\$ 7.500 .00$	so		so		
$\frac{\text { Subtotal }}{\text { Contrator Markups and General Conditions }}$				\$965,120	$\begin{array}{r} \$ 965,120 \\ \hline \$ 256.722 \end{array}$	S1,842,538	\$1,842,538	
Contracior Home Office			5.0\%	${ }^{548,256}$				
Contrator General Conditions			8.0\%	S77,210				
Poniractor ${ }_{\text {Pree }}$			8.6\%	${ }_{\text {S25,093 }}$				
Mobilization/Demobilization			3.0\%	\$28,954				
Probable Construction Cost					\$1,221,842			
Contingencies					¢366,553			
Facility design allownces based on level of design	1		25\%					
Marke adiustment factor	1	${ }_{\text {Per }}^{\text {PER }}$	5\%	$\underset{\substack{\text { s61,092 } \\ \text { So }}}{\text { a }}$				
Consultant and Subcontractor Fees					\$254,143			
Allowance for geotechnical invesitigation	0	${ }_{\text {LS }}$	S33,000.00	${ }^{\text {so }}$				Assume 2 geotech investigation alowances per parcel.
Allowance for envirommental permititing	1	${ }^{\text {Ls }}$	s0.00	so				
Engineering design and municipal permiting fee	1	Per	8.0\%					
			Total Probable Cost					
			Low Range	- ${ }_{\text {50\% }}$	$\$ 1,291,000$ $\$ 270500$ $\$ 1,291,000$ $\$ 25000$			

Dosesripion	aty	Unit		$\underset{\substack{\text { Tooal } \\ \text { cost }}}{\text { cos }}$	sumbatas			${ }^{\text {Notes }}$
Wellands Mitigation					\$654,810		5987,433	
Vernal pools mitigation	${ }^{0} 1.9$	${ }_{\text {EA }}^{\text {EA }}$				${ }_{\text {s411,096 }}^{\text {s50, } 58}$		Assume 3:1 mitigation area for vernal pools only_ per Jacobs biologist, 10/25/2018
Agticulural Pons, Mrimgated weland	0.0	EA	\$300,000.00	so		so		
Subbal				S64, ${ }^{\text {8 }}$	S654.810	S987,453	5987,453	Noentarames
			0.0\%\%					
Contracio (eneraic Condin			${ }^{\text {0,00\% }}$	so				
			${ }_{\substack{0.0 \% \% \\ 0.0 \%}}^{0}$	¢0				
Probable Constuction Cost					S664.810			
			$\underbrace{\substack{25 \%}}_{\text {25\% }}$		${ }_{\text {S196,433 }}$			
	1	${ }_{\text {PER }}^{\text {PeR }}$	\%\%	$\underset{\substack{53274 \\ 50}}{\substack{\text { che }}}$				
Consultat and subucontrater Foess					\$136,200			
	!	$\stackrel{\text { Ls }}{\substack{\text { Ls }}}$		so				
	1	${ }_{\substack{\text { PeR } \\ \text { PeR }}}$						

High Rang Sis3,000
\qquad

Description	aty	Unit	Unit Cost	${ }_{\substack{\text { Total } \\ \text { Cost }}}^{\text {ate }}$	btotals	$\begin{array}{\|c\|} \hline \text { Total Cost w/ } \\ \text { Markup, Cont., \& Fee } \\ \hline \end{array}$	$\begin{gathered} \text { Subtotals wl } \\ \text { Markup, Cont., \& Fee } \end{gathered}$	${ }^{\text {Notes }}$
Site-wide Demolition and Disposal					\$1,501,708		\$2,86,952	
Demolition of exisiting infrastructure Pad demolitoon			\$55.00	\$1.074.231				
Buididing demolition	${ }^{191,511}$	Cr	\$54.00					Assume three $100^{\prime} \times 100^{\prime} \times 50^{\prime}$ building demo with density factor 0.2
Demolition debiris disposal	15,321		\$25.00	\$383,032		\$731,258		
Subtoal				\$1,501,708	\$1,501,708	\$2,86,952	\$2,86,952	
Contractor Markups and General Conditions					\$399,454			
Contractor Home Office			5.0\%	${ }_{\text {s75,085 }}^{\text {s720 }}$				
Contractor General Conditions Contractor Fee			- ${ }_{8}^{8.0 \%}$	${ }_{\text {\$120, }}{ }_{\text {S }}$				
Project Bondl/nsurance			2.6\%	${ }_{\text {S }}^{\text {S }}$				
Mobilization/Demobilization			3.0\%	\$45,051				
$\stackrel{\text { Probable Construction Cost }}{ }$					\$1,901,162			
					\$550,349			
$\xrightarrow{\text { Contugenclies }}$ Facily design allowances based on level of design		PER	25\%	\$475,290				
Mater Marke adiustent factor	1	PeR PER	5\%	$\underset{\text { s95.058 }}{\text { s0 }}$				
Consultant and Subcontractor Fees					\$395,442			
Allowance for geotecenhical investigation	${ }_{0}$	$\stackrel{L s}{ }$	\$30,000.00	${ }_{50}$				Assume 2 geotech investigation allowances per parcel.
Alownece for environmental permitting Engineering design and municipal permiting fee	1	${ }_{\text {PER }}$	${ }_{\substack{50.00 \\ 8.0 \%}}$	(1907				
Construction management fee	1	PER	8.0\%	\$197,721				
			Total Probable Cost					
			$\underset{\substack{\text { Low Range } \\ \text { High Range }}}{\text { Len }}$. ${ }_{\text {50\% }}$	$\$ 2,007,000$ $\$ 4,301,000$			

Description	aty	Unit	$\underbrace{\text { Cost }}_{\text {Unit }}$	$\underbrace{\text { ate }}_{\substack{\text { Total } \\ \text { Cost }}}$	Subtotals	$\begin{array}{\|c\|} \hline \text { Total Cost w/ } \\ \text { Markup, Cont., \& Fee } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Subtotals w/ } \\ \text { Markup, Cont., \& Fee } \\ \hline \end{array}$	${ }^{\text {Notes }}$
MRF Upgrade to TS					\$217,778		\$415,766	
Earthworks	111	cr	\$30.00	\$3,333		S6,364		Assume excavate two bays to instal scales, 100 feet lengt by 20 feet width with 9 " thick exsiting asphat
Existing asphalt removal Asphalt paving (9" thick)	222	sy	s65.00	\$14,444		\$27,576		
Scales and Instrumentation Truck scale (100') supply and install include concrete footings	2	เs	\$100,000.00	\$200,000		\$381,826		
Subtotal				\$217,778	\$2217,778	\$415,766	\$415,766	
Contractor Markups and General Conditions					S55,929			
Contractor Home office			${ }_{\text {5.0\% }}$	${ }_{\text {S10,889 }}$				
Contractor General Conditions Contrator Fee			${ }^{8.0 \% \%}$	S17,422 S17.422				
Proied Bondin hurance			2.6\%	${ }_{\substack{\text { s5, } 662 \\ 56.531}}$				
Mobilization/Demobilization			3.0\%	56,533				
$\stackrel{\text { Probable Construction Cost }}{ }$					\$275,707			

| | | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | | |

Appendix 4A-2
Capital Cost Estimates
Plan Concept 1

Rough Order of Magnitude (Class 4) Cost Opinion
Renewable Placer - Waste Action Plan
Roseville, CA
Date: Oct-30-2018

Total Probable Cost	

		$\$ 521,233,000$
Low Range	$\mathbf{- 3 0} \%$	$\$ 364,864,000$
High Range	$\mathbf{5 0 \%}$	$\$ 781,850,000$

Renewable Placer - Waste Action Plan
Roseville, CA
Date: Oct-30-2018

Common Construction Unit Rates	Unit Cost	Unit	Variable	Notes
Earthworks, Pads and Roadways				
Strip topsoil (12" deep) and stockpile onsite	\$1.30	SY	topsoil_strip	Assumes stockpile along west property boundary, scraper haul
Fine grade site, machine	\$1.20	SY	finegrade	MEANS 312216
Common excavation to Stockpile (2' deep)	\$3.90	CY	common_ex	MEANS 3320 15, Assume stockpile along west property boundary
Subgrade preparation	\$1.30	SY	subgrade_prep	
Granular sub-base ($3^{\prime \prime}$ minus, 6 " thick)	\$7.30	SY	gran_subbase	CALTRANS Historical 260203
Granular base (DGA, 12" thick)	\$36.00	CY	gran_base	CALTRANS Historical 260303
Curb and gutter	\$14.00	LF	curb_gutter	MEANS 321613
Asphalt paving (9" thick)	\$65.00	SY	asphalt	CH2M estimate
Roadway/Perimeter Ditching	\$1.50	LF	ditching	Grader/dozer work
Environmental Protection				
Clay liner (0.5 m thick)	\$3.40	SF	clay_liner	CH2M Estimate \$55/cy, 20" thick
Groundwater monitoring wells	\$7,500.00	LS	GW_wells	CH2M Estimate (3 wells to 30 ft , casing protector)
Synthetic pond liner (supply and install)	\$6.30	sy	HDPE_liner	CH2M Historical, 40 mil
Buildings and Concrete				
Strip Footing (2^{\prime} 'thick, 3^{\prime} wide)	\$176.00	LF	strip_footing	0.22 cy per LF
Push Wall Footing (2^{\prime} 'thick, 8^{\prime} wide)	\$570.00	LF	push_wall_footing	0.6 cy per LF
Push Walls (12' high, 12' thick at top, 18" thick at base)	\$600.00	LF	push_wall	0.6 cy per LF
Slab-on-Grade concrete floor (8")	\$12.00	SF	concrete_slab	after verbal discussions with local contractor
Utility Connections				
Potable water connection	\$0.00	LF		
Sanitary sewer connection	\$0.00	LF		
Electrical tie-in to transformer	\$75.00	LF	buried_elec	450 KVA total connected load/ 300 KVA operating demand
Telecom connection	\$0.00	LF		
Natural gas connection	\$0.00	LF		

Markups and Fees	Rate	Unit	Variable	Notes
Contractor Mob and General Conditions				
Contractor Home Office	5.0\%		CHO	Assumes multi-trade GC does most all of the work
Contractor General Conditions	8.0\%		CGC	Assumes 12 month construction schedule
Contractor Fee	8.0\%		CF	
Project Bond/Insurance	2.6\%		PBI	
Mobilization/Demobilization	3.0\%		Mob_Demob	
Contingencies:				
Facility design allowances based on level of design	25\%		design_cntngy	
Market adjustment factor	5\%		MAF	Construction market is very busy
Escalation	0\%		escalation	use 3\% per year
Consultant and Subcontractor Fees:				
Engineering design and municipal permitting fee	8.0\%		Eng_fee	
Construction management fee	8.0\%		CM_fee	
Estimate Ranges:				
Low Range	-30\%		low_range	
High Range	50\%		high_range	

Notes:
The cost estimates are based on 1 st quarter 2016 rates from the CALTRANS historical costs (concrete and import fill), MEANS (earthwork), CH2M historical values, Golder historical values, and calculated values where indicated. Cost estimates are largely based on 2016/2017 values because cost development commenced in 2017, prior to Board meeting in Dec 2017. A CH2M/Jacobs cost estimator has
2 These AACEI Classification Class 4 cost estimates are assumed to represent the actual total installed cost within the range of -30 percent to +50 percent (\% based on AACEI) of the cost indicated.
3 The estimate is prepared with due diligence with the available information and under normal operations. However this should be subject to market demands and circumstances. The possibility of securing a competive bid process is questionable and should be taken into consideration.
4 Factors that may affect the estimate on the following issues include escalation, premium on labor, engineering
5 The final cost do the project will be subject to labor rates, material cost, actual site conditions, availability of labor, material and equipment, final project scope, final project schedule (flexible or fixed), public consultation and input, and other mitigating factors (e.g. timing of construction and award). As a result, the final project cost may defer from the presented budget. Due to facts mentioned, the funding of the project should be carefully reviewed prior to establishing the final budget.
6 It is assumed that the facility is constructed on a green field site and there is no demolition required or hazardeous materail to remove and dispose.
7 It is assumed that the work will performed under a $40-\mathrm{hr}$, normal workweek schedule. No acceleration costs included..
8 It's assumed that all materials are readibly available at no premium costs, that delivery is normal costs, and the contractor has adequate laydown and site facilities.

Exclusions/Qualifications:

Equipment specifications not identified
2 Federal and state sales tax are included in unit rates
3 Municipal fees \& licences not included
4 As the design is at conceptual stage, the tie-ins to existing equipment and facilities have not being identified
5 Rock excavation not included
6 Dewatering is not included
7 Escalation is not included. Values are in 1st Qtr 2016 values

Description	aty	Unit	$\underbrace{\text { cost }}_{\text {Unit }}$	${ }_{\substack{\text { Total } \\ \text { cost }}}^{\text {cose }}$	Subtotals	$\begin{gathered} \text { Total Cost w/ } \\ \text { Markup, Cont., \& Fee } \end{gathered}$	$\begin{gathered} \text { Subtotals w/ } \\ \text { Markup, Cont., \& Fee } \end{gathered}$	${ }^{\text {Notes }}$
C8D-C8D Pad (700' 3 3 30°					\$3,00, 112		55,72, 598	
Strip topsoil (12" deep) and stockpile onsite	25,667	sr	\$1.30	\$33,367		\$63,702		Assume 1/3 pad is new; demo cost is induded in Site-wide Demo sheet
Fine grade site, machine	25,667	sy	\$1.20	\$30,800		\$58.802		
Common excevation to Stockpile (2'd deep)	${ }_{25667}$	cr	s3.90 si.30	${ }_{\text {s33,367 }}{ }^{\text {S0, }}$		¢63.702		
	$\stackrel{\text { 25,667 }}{ }$	cr	S37.00 Sta	S33,307		s63,702		
Granular base (DGA, $12^{\prime \prime}$ thick)	951	cr	S36.00	\$34,223		\$65,335		
Curb and gutter	0	LF	\$14.00					
Asphat paving (99. thick)	25,667	SY	${ }_{\text {Sc5s.00 }}$	\$1,688,355		\$3,185,103		
Rooaway Perimeter Ditching Alowance oforshphat removal	0	$\stackrel{\text { LF }}{\text { LS }}$	${ }_{\text {ctic,00.00 }}$	so		so		
Overrnang Roof								
Overtang with structural column support (no wals)	20,000	SF	S60.00	\$1,200,000		\$2,290,954		Assume cover for $100^{\prime} \times 200^{\prime}$ portion of $\mathrm{C} \& \mathrm{D}$ pad to shield processing line from rain; not a building, just an open-air roof structure; includes foundation
Enviormental Protection								
$\underset{\substack{\text { Clay liner } \\ \text { Groundwater monitoring wells }}}{ }$	\%	$\stackrel{\text { SF }}{\text { LS }}$	S3.40 \$7,50.00	so ${ }_{\text {so }}$		so ${ }_{\text {so }}$		
C8D - Processing Line					\$4,026,250		\$7,686,627	
Processling line, includuding stippeing, instalation, and startup	1	EA	\$4,000,000.00	\$4,000,000		\$7,636,512		Buk Handiling Quote, Sept 2018
Utility Connections								
Potable water comnection		LF	\$0.00	so				Assume can use for process water and potable use
Santiary sewer coonection	${ }_{350}$	$\stackrel{\text { LF }}{\text { LF }}$	50.00 57500	(50,		${ }_{\text {s50, }}$		Assume electrical supply is present for existing C8D and can use this with extension
Telecom toonection	50	LF	\$0000					
Natural gas connection								
Subtotal ${ }_{\text {contrater }}$ Carkup and General Conditions				\$7,026,362	\$7,026,362		S13,414,225	
Contrator Home office			5.0\%	${ }_{\text {S351, } 318}$				
Contractor General Conditions			8.0\%	\$562,109				
Contractor eee Project Bondl/ Surance			${ }_{\text {l }}^{\text {2.0\% }}$	(5 S662, 109				
Mobilization/Demoboilization			3.0\%	\$210,91				
Probable Construction Cost					¢8,95,375			
Contingencies					\$2.68.612			
Facility design allowances based on level of design	1	PER	25\%	\$2,223,844				
Mater	1	PER PER	5\%	$\underset{\substack{\text { s44, } \\ \text { so }}}{\text { a }}$				
Consultant and Subcontractor Fees					\$1,850,238			
Allowance for geotechichialinvestigation Allowance for eviromental permiting	${ }_{1}$	$\stackrel{\text { Ls }}{\text { LS }}$	\$30,000.00 so.00	${ }_{\text {so }}^{\text {so }}$				Assume 2 geotech investigation allowances per parcel.
Engineering desigig and municical permiting fee Construction manaement	1	${ }_{\text {PeR }}^{\text {Per }}$	${ }^{8.0 \%}$	\$995.119				
Construction management fee		PER	8.0\%	\$925,119				
			Total Probable Cost					
				- $\begin{aligned} & -3 \% \% \\ & 50 \%\end{aligned}$	\$9,391,000			

Description	aty	Unit	Unit cost	${ }_{\substack{\text { Total } \\ \text { cost }}}^{\text {cta }}$	Subtotals	$\begin{gathered} \text { Total Cost w/ } \\ \text { Markup, Cont., \& Fee } \end{gathered}$	$\begin{gathered} \text { Subtotals w/ } \\ \text { Markup, Cont., \& Fee } \end{gathered}$	${ }^{\text {Notes }}$
Stockpile Relocation					s7,00,000		\$13,363,996	
	1,400,000	Cr	\$5.00	\$7,000,000		\$13,363,996		As of $6 / 30 / 2017$, there are 1.4 MCY of soil stockpiled on Modules $6-8$, nearly all of it on $6-7$, compared to the pre-development grades of 1978 (Keith Schmidt, 10/15/2018)
Landfill Construction					S100,946,270		\$192,719,350	
New Landill								Source: Golder Associates, WRSL Cost Estimate - REVV1-120717_101018_rdh.xsx, Sheet "Table 5 (1a)"
Design and Permititing	10	ea	\$100,000.00	\$1,000,000		\$1,099,128		Assumes 10 cells
Mobilizaion/Demobilization	10	${ }^{\text {ea }}$	\$100.00.00	\$1,000,000		\$1,099,128 S477 288		Assumes 10 cells
Layout of Work and Surreys	${ }^{10}$	${ }^{\text {ea }}$	\$255000.00	\$255,000		\$477,282		Assumes 10 cells
$\underset{\substack{\text { Claxing and Grubbing } \\ \text { Excavation }}}{\text { ata }}$	${ }_{8,328,071}{ }^{257}$	${ }_{\text {a }}^{\text {c }}$				\$ 5 \$735.9.969		
Overexcavation of Unsuitable Subgrade Material	200000	cy	\$10.00	\$2,000,000		53,818,256		Assumes 20,000 cy per cell
Earthill		cy	\$4.00	8800,000		\$1,57, 302		Assumes 20,000 cy per cell
Subgrad Preparation	$11,159,400$ $11,159,400$	sf	So.15			S3,195,708 S17,4,778		
${ }^{60} 6$-mil Hop Double Sided Textred Geomembrane	9,477,161	sf	S0.75	¢		\$		Floor Only
	${ }_{9,477,161}^{11,15900}$	${ }_{\text {sf }}^{\text {sf }}$	¢0.750			(1514.978,422		Floor Only
${ }_{\text {Bozzsy }}$ Sornuoven Geotextile	9,477,161	sf	so.20	\$1,895,432		${ }_{\text {S3, } 218,623}$		Floor Only
Anchor Trenches	10,000 351,06	${ }_{\text {c }}$	S 513.00	¢ ${ }_{\text {\$13,338,000 }}$		${ }_{\text {S25,46, } 382}^{524,187}$		
Sumageayer	${ }^{351,750}$	cy	${ }_{\text {S82, }} 5300$	${ }_{\text {\$ }}$ \$143,500				Assumes 175 pers sump
Base Operations Layer	351,006	cy	${ }_{55.60}$	\$1,965,633		S3,75, 646		Floor Only $\times 1$ ft
Side Slope Operations Layer 6 C-inch Diameer SOR 11 HPP LCRS Pipe	63,000 27000	cy		¢		(9781,788		Side Slipex 1 \tit
	cin, ${ }_{6}^{27,000}$	\|f	${ }_{\text {S }}^{\text {S }}$ \$20.00	\$954,000		¢		Assumes 2.700 per cell
	${ }^{16,000}$	${ }_{15}^{1 f}$	\$520.00 ${ }_{\text {s30.000.00 }}$			${ }_{\substack{\text { S610,921 } \\ \$ 572,738}}$		Perimeter of entire site
Leak Detection Survey	10	is	\$17,000.00	\$170,000		${ }_{\text {\$324,552 }}$		
	100 480000	ac	(51.5050 .00	\$150,000 $\$ 1200000$		(5288.369		Assumes 10 acres per cell
Perimeerer Road	488,000 18.000	${ }_{\text {st }}^{\text {cy }}$	(\$3500	\$1,200,000		¢		
	3, 32,867	${ }_{\text {If }}^{\text {If }}$	\$55.00	¢		${ }_{\substack{\text { S } \\ \text { S230, } 137 \\ \hline 187}}$		
${ }_{\text {Stormwater Controls }}$	${ }^{2,10}$	ea	\$2,500.00	\$25,000				
Stormwater Polution Preventio Plan Preparation Stromwater Polution Prevention Plan Inplementation	10 10	${ }_{\text {ea }}^{\text {ea }}$	\$8800	\$778,000				
Monitoring Systems								Source: Golder Associate, WRSL Cost Estimate - REVV1-120717_101018_rdh.x\|xx, Sheet "Table 5 (11)"
Monitoring System Design Serices		is	\$100,000.00	\$100,000		\$190,913		
Decomision Replace Groundwater Wells	7	ea	S20.000.00 S10.000.00	\$140,000		5267.278 538.183		
	1	ea	\$ 510.0000000					
L-GG Extraction Weess	321	$\underset{\text { is }}{\substack{\text { ea } \\ \text { ea }}}$	${ }_{\text {\$420, }}^{\text {S } 50.00000}$	\$		Sticheren		
	32,100 16.000	If	s20.00 $\$ 110.00$	S642,000 S1,760000				100 fetr per well Peimeter Only
LFG Well Heads	${ }_{321}^{10.000}$	ea	${ }_{\text {\$250.00 }}$			¢		
Flare System ${ }_{\text {conden }}$	10	is	S2.000 550000000	\$2,000,000				
${ }_{\text {Con }}^{\text {Condensate Sumps }}$ 2-in Sor 9 Hop Condensate Piping	32,100	ea	\$520.00	S56000		ST, 5 S.256,		${ }^{1} \mathbf{p e r}$ cell
	${ }_{8}^{32,100}$	${ }_{\text {ea }}^{\text {lif }}$	Stion ${ }_{\text {sc.000.00 }}$	¢ ${ }_{\text {S48,000 }}$				Assume average 50 -foot depth for each @ \$120/ft
Decomisision R Replace Suction Lysimeters	1	is	\$20,000.00	\$20,000		s38,183		
Leachate Collection and Removal System Design	1	Is	\$100,000.00	\$100,000				Source: Golder Associates, WRSL Cost Estimate - REV1-120717_101018_rdh.xlsx, Sheet "Table 5 (1a)" Plan Concept 1 has a higher level of complexity to manage leachate. Leachate piping/sump configuration

Unlined Area Waste Excavation					542,670,200		\$81,462,874	
Unined Unit - Waste Exavation and Relocation								Source: Golder Associates, WRSL Cost Estimate - REVV1-120717_101018_dd...Xs, Sheet "Table 5 (1a)
Design and Permititing	4	ea	\$100,000.00	\$400,000		\$763,651		Assumes 4 cells
MobilizationDemomotiration Layout of Work and Survers	5	${ }_{\text {ea }}^{\text {ea }}$	${ }_{\text {S }}^{\text {\$15,000.00 }} \mathrm{\$ 30.000.00}$	\$875,000		(Assumes 4 cells + waste removal Assumes 4 cells + waste removal
Remove Wasite in Ulinined Unit	3.64,000		\$ 81.50	\$41,929,000		\$880,047,828		Cost source: Waste Exceavation and Relocation Cost Comparison.x
Subgrade Preparation	O	sf	S0.15	so		so		Re-construction under New Landifil element above
60-mil Hope l ouvile Sided Textured Geomembrane		${ }_{\text {sf }}$	so.75	so		so		Reconstruction under New Landifil lemenent above
60 -mil White Single Sided Textured HDPE Geomembrane	0		\$0.75	so		so		Re-construction under New Landifil element above
Geocomposite	0	sf	50.80	so		so		Re-construction under New Landifil element above
8ozsy Nonwoven Geotexilie Anchor Trenches	\bigcirc	sf	\$80.20	so		so		Re-construction under New Landifil element above
Anchor	0		\$38.00	so		so		Reconstruction under New Landifil elemenent above
Base Operations Layer	0	cy	${ }_{95.60}$	so		so		Re-construction under New Landifil lement above
${ }_{\substack{\text { S }}}^{\text {Side Slope Operations Layer }}$ 6-inch Diameter SDR 11 HPPE LCRS Pipe	\bigcirc	cy	S 5 S6.50	so		so		Re-construction under New Landifil element above
Sip Rene	\bigcirc	Is	\$330.000.00	so		so		Re-construction under New Landifill element above
Leak Detection Survey Revegation	\bigcirc			\$0		S0		Re-constuction under New Landifil element above
Revegetation	200	$\underset{\substack{\text { ac } \\ \text { fi }}}{ }$	\$1.500.00	S15,000		(50.68		Re-construction under New Landifil element above
Storrwwater Controls	4	еа	\$2,500.00	S10,000		S19,091		
Stormwater PPolution Prevention Plan Preparation Stormwater Polution Prevention Plan Inplementation	${ }_{4}^{4}$	${ }_{\text {ea }}^{\text {ea }}$	\$87,800.00	S63,2000		\$ ${ }_{\text {ST99,65 }}^{\text {S14,548 }}$		
Landifill Closure					\$41,529,520		\$79,285,170	
Closure Construction Cost Mobilization/Demobilization	9	is	\$75,000.00	S675,000		\$1,288,661		Source: Golder Associates, WRSL Cost Estimate - REV1-120717_101018_rdh.xlsx, Sheet "PC 1 olosure"; assume closure is 321 ac consistent with estimated postclosure acres Assumes partial closure completed in 9 events

Closure Construction Colitat
Mobibizization Demebobiration Vegetative Layer

Geocomposite \begin{tabular}{l}
Seocomposite

GO-mil PDPR DST Geomembrane

\hline

Geosynthenic Clay Liner

2-fot Foundation Layer

\hline
\end{tabular} 2.foot Foundation

Ancor Trences
Bench V-Ditches Bench V-Ditheses
TOp Deck Berms

TOM \begin{tabular}{l}
MP Downdran

Drain Inlets

\hline

Revegetation

Stormwater Controls

\hline
\end{tabular} Stormwater Poplution Prevention Plan Preparation

Stormwater Polution Prevention Plan Implementaio

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Description \& aty \& Unit \& Unit
cost \& ${ }_{\substack{\text { Total } \\ \text { cost }}}^{\text {cta }}$ \& Subtotals \& $$
\begin{gathered}
\text { Trotal Cost wI } \\
\text { Markup, Cont. } \& \text { Fee }
\end{gathered}
$$ \& $$
\begin{gathered}
\text { Subtotals w/ } \\
\text { Markup, Cont., \& Fee }
\end{gathered}
$$ \& ${ }^{\text {Notes }}$

\hline Main Entrance-Roadway \& \& \& \& \& \$420,500 \& \& \$802,788 \&

\hline Earthoorks, Pads and Roadways (45' development width assumed)
Rooaway - Single Lane \& 950 \& ${ }^{\text {LF }}$ \& \$290.00 \& \$275,500 \& \& \$525,965 \& \&

\hline Roadway - Doull Lane \& 250 \& LF \& \$580.00 \& \$145,000 \& \& \& \&

\hline Curb and gutter \& 0 \& LF \& \$14.00 \& \& \& \& \&

\hline Main Entrance - Scale/Building \& \& \& \& \& \$611,133 \& \& \$1,166,732 \&

\hline Earthworks, Pads and Roadways \& 1.000 \& SY \& \$1.30 \& \$1,300 \& \& \& \&

\hline Fine grade site, machine \& ${ }_{1}^{1,000}$ \& sy \& \$1.20 \& \$1,200 \& \& ¢ ${ }_{\text {S2,291 }}$ \& \&

\hline Common excavation to Stockpile (2' deep) \& 0 \& cr \& s3.90 \& so \& \& so \& \&

\hline Subgrade preparation \& 1,000 \& sY \& \$1.30 \& \$1,300 \& \& \$2,482 \& \&

\hline \& ${ }_{37}$ \& cr
Cr

dr \& s36.00
S3600 \& \$1333 \& \& so \& \&

\hline Curb and gutuer \& ${ }_{0}$ \& LF \& \$14.00 \& so \& \& ${ }_{\text {sol }}^{5}$ \& \&

\hline Asphat paving (99 thick)
Roadway \& \bigcirc \& $\underset{\text { SY }}{\substack{\text { SY }}}$ \& ${ }_{\substack{\text { S65.00 } \\ \text { S150 }}}$ \& so \& \& so \& \&

\hline RoadwayPerimeter Diththing \& 0 \& LF \& \$1.50 \& so \& \& so \& \&

\hline Scale Buiding and Scales \& \& \& \& \& \& \& \&

\hline \& \& \& \& \& \& \& \&

\hline Truck sale (100) supply and instal include encriele footings \& 3
4 \& $\stackrel{\text { LS }}{\text { LS }}$ \& \$ 5100.0000 .00 \& $\$ 350,000$
$\$ 20,000$ \& \& ${ }_{\text {S }}^{5572,7788}$ \& \& Assume 2 scales incoming, 1 scale outgoing

\hline Allownce for traficil lights gatess/signs \& \& Ls \& \$20,000.00 \& \$20,000 \& \& ${ }_{\text {S38, } 183}$ \& \&

\hline Allowance for CCTV system \& 1 \& Ls \& \$10,000.00 \& \$10,000 \& \& \$19,091 \& \&

\hline Utility Connections \& \& \& \& \& \& \& \&

\hline Potaile waier connection \& ${ }_{800}^{800}$ \& $\stackrel{\text { LF }}{\text { LF }}$ \& \$885.00 \& \& \& ${ }_{\text {\$ }}^{\$ 109,911}$ \& \& Stubbed from lla scalenouse

\hline Electrical liein to transtormer \& 800 \& ${ }^{\text {LF }}$ \& \$75.00 \& \$60,000 \& \& \$114,548 \& \& Stubed from old scalehouse; 120/220 V single phase senice

\hline Telecom connection
Natural gas connection \& ${ }_{0}^{800}$ \& $\stackrel{\text { LF }}{\text { LF }}$ \& ¢ ${ }_{\text {S60.00 }}^{\text {s800 }}$ \& $\underset{\text { s48,000 }}{\text { so }}$ \& \& $\underset{\substack{\text { s91, } \\ \text { so }}}{\text { cei }}$ \& \& Stubed from old scalehouse

\hline Subtotal \& \& \& \& \$1,031.633 \& \$1,031,633 \& \$1,969,520 \& \$1,969,520 \&

\hline Contractor Markups and General Conditions \& \& \& \& \& \$274,414 \& \& \&

\hline Contractor Home office
Contrator General Conditions \& \& \& 8.0\%\% \& ${ }_{\substack{\text { S51,582 } \\ \text { s82,531 }}}^{\text {a }}$ \& \& \& \&

\hline Contractor General Conditions \& \& \& ${ }^{8.0 \% \%}$ \& ${ }_{\text {S88,531 }}$ \& \& \& \&

\hline Project Bondlnsurance
Mobilization/Pemobilization \& \& \& ${ }_{3.0 \%}^{2.6 \%}$ \& \$26,822 \& \& \& \&

\hline Probable Construction Cost \& \& \& \& \& \$1,306,048 \& \& \&

\hline \& \& \& \& \& \& \& \&

\hline Contingencies \& \& \& \& \& \$391,814 \& \& \&

\hline Facility design alowances based on level of design
Marke adiusment actor \& 1 \& ${ }_{\substack{\text { PeR } \\ \text { PeR }}}$ \& ${ }^{25 \%}$ \& ${ }_{\substack{5326.512 \\ \$ 65302}}^{\text {S }}$ \& \& \& \&

\hline Mester Escaltion \& 1 \& PER \& 0\% \& S6.502 \& \& \& \&

\hline Consultant and Subcontractor Fees \& \& \& \& \& \$271,658 \& \& \&

\hline Alowance for geotechnieal investigation \& ${ }_{1}$ \& ${ }_{\text {LS }}^{\text {LS }}$ \& \$30.000.00 \& ${ }_{50}{ }_{50}$ \& \& \& \& Assume 2 geotech investigation allowances per parcel.

\hline Allownefef for environmental permititigg
Engineering design and municipal permiting fee \& 1 \& $\stackrel{\text { LS }}{\text { PER }}$ \& ${ }_{\text {80,0\% }}^{\text {s0.00 }}$ \& \$135,829 \& \& \& \&

\hline Construction management fee \& 1 \& PER \& 8.0\% \& \$135,829 \& \& \& \&

\hline \& \& \& Total Probable Cost \& \& \& \& \&

\hline \& \& \& Low Range

High Range \& $$
\begin{aligned}
& -30 \% \\
& 50 \% \\
& 50
\end{aligned}
$$ \& $\$ 1,3,39,000$

$\$ 2,955,000$ \& \& \&

\hline
\end{tabular}

Description	aty	Unit	${ }_{\substack{\text { Unit } \\ \text { cost }}}$	${ }_{\substack{\text { Total } \\ \text { cost }}}^{\text {cta }}$	Subtotals	$\begin{gathered} \text { Trotal Cost wI } \\ \text { Markup, Cont. } \& \text { Fee } \end{gathered}$	$\begin{gathered} \text { Subtotals w/ } \\ \text { Markup, Cont., \& Fee } \end{gathered}$	${ }^{\text {Notes }}$
Western Entrance - Roadways					\$2,218,500		\$4,23,400	
Earthworks. Pads and Roadways (45' development width assumed) Roadway - Single Lane	6,750	LF	\$290.00	\$1,957,500		¢3,73, ,118		
Roadway - Doull Lane	${ }_{450}$	LF	\$580.00	$\underset{\text { s261,000 }}{\substack{\text { sion }}}$		s498,282		
Curb and gutter	0	LF	\$14.00	so				
Western Entrance - Scale/Rusilding					\$322,633		\$615,948	
Earthworks, Pads and Roadways								
Strip topsoil (12" deep) and stockpilie onsite Fine arade site	1,000	SY	\$1.30	\$1,300		${ }_{\text {S2,482 }}$		
Common excavation to Stockpile (2'deep)	${ }^{1,000}$	cr	S1.20 83.90	som				
	1,000	SY	51.30 83600	\$1,300		\$2,482		
	${ }_{37}$	Cr	s36.00 S3600	\$1333		s0		
Curb and gutuer (ea, 12 'thick)	3	$\stackrel{\text { cr }}{\text { ci }}$	S36.00 S14.00	sol				
	:	$\underset{\substack{\text { SY } \\ \text { LF }}}{\text { cher }}$	${ }_{\substack{\text { S65.00 } \\ \text { S150 }}}$	so		so		
RoadwayPerimeter Diththing	0	LF	\$1.50	so		so		
Scale Buiding and Scales			\$24.000.00					
Truck scale (100)'supply and instal include concrete footings	2	${ }_{\text {Ls }}$	\$100,000.00	\$200,000		\$381,826		Assume 1 incoming and 1 outgoing
Allowance for concrete approach slabs (2 eer scale deck)	4	${ }^{\text {Ls }}$	\$5,000.00	S20,000		¢538,183		
Allowance for trafici lights agaess Signs Alowance for cCTV s system	1	$\stackrel{\text { Ls }}{\text { LS }}$	\$20,000.00 \$1,000.00	\$ $\begin{aligned} & \text { \$20,000 } \\ & \$ 10,000\end{aligned}$				
Utiliy Connections								
Potable water connection	150	LF	570.00	\$10,500		\$20,046		Stubbed from Fiddyment R R utility coridor
Sanitary sever coonection Electrical iein to trastormer	${ }^{150}$	Lf	S85.00	\$12,750		${ }_{\text {S }}^{\text {S24,3,31 }}$		
	150	$\stackrel{\text { LF }}{\text { L }}$	s60.00	Ss,000		\$		Stubed from Firadment R R untiy corrior, $120 / 22 \mathrm{~V}$ single phase senvice
Natural gas connection	15	$\stackrel{\text { LF }}{ }$	\$80.00	${ }_{\text {spo }}$		so		
Subtotal				\$2.541,133	\$2,541,133	\$4,85, ,349	\$4,851,349	
Contractor Markups and General Conditions					S6675,941			
Contractor Home Office Contrator General Conditions			${ }_{8.0 \%}^{5.0 \%}$					
Contractor Fee			8.0\%	\$203,291				
Proiect Bondlnsurance			${ }_{\text {3.0\% }}^{2.6 \%}$	S66,069				
$\stackrel{\text { Probable Construction Cost }}{ }$					\$3,217,075			
Contingencies					5966,122			
Fracilit design alowances based on level of design	1	${ }_{\substack{\text { PeR } \\ \text { PER }}}$	${ }_{5 \%}^{25 \%}$					
Mascalaion	1	${ }_{\text {PER }}$	0\%	ssio, ${ }_{\text {So }}$				
Consultant and Subcontractor Fees					\$669,152			
Allowance for geotech hical investigation	${ }_{1}$	${ }_{\text {LS }}$	${ }_{\text {S30,000.00 }}$	So				Assume 2 geotech investigation allowances per parcel.
	1	${ }_{\text {PER }}^{\text {LS }}$	${ }_{\text {s.0.00 }}^{\text {s.0\% }}$	¢ ${ }_{\text {¢34,576 }}$				
Construction management tee	1	PER	8.0\%	\$334,576				
			Total Probable Cost					
			Low Range High Range	$\begin{aligned} & \text {-30\% } \\ & 50 \% \end{aligned}$	\$3,397,000 $\$ 7,278,000$			

Doscripion	${ }^{\text {aty }}$	Unit	$\underbrace{\text { cost }}_{\text {Unitt }}$	$\underset{\substack{\text { Total } \\ \text { cost }}}{\text { cose }}$	Subotals			
Overpass					\$4, 860,037		59,278,433	
		$\begin{aligned} & \mathrm{sF} \\ & \mathrm{sF} \\ & \text { sF } \\ & \mathrm{sF} \\ & \mathrm{sF} \end{aligned}$	$\begin{gathered} \$ 4.00 \\ \$ 2.00 \\ \$ 20 \\ \$ 150 \\ \$ 300 \end{gathered}$	$\begin{gathered} \text { Sl1512000 } \\ \hline \end{gathered}$				
$\frac{\text { Subital }}{\text { Contactor Tarkus sand General Conditions }}$				S4, 860.037		s9,278,433	S9,278,433	
Coin			(i.c.					
Probable Constuction Cost					S6,152807			
	$\frac{1}{1}$	per per per	$\begin{gathered} 250 \% \\ 5.5 \% \\ 0 \% \end{gathered}$					
Consulutan And sutucontratiof Foess					\$1,297,74			
Allowance for geotechnical investigation Engineering design and municipal permitting fee Construction management fee		$\begin{gathered} \text { Lser } \\ \text { PRer } \\ \hline \text { PR } \end{gathered}$		$\begin{gathered} \$ 0 \\ \$ 0 \\ \$ 639,892 \\ \$ 639,892 \end{gathered}$				Assume 2 goolect invesigation alownoces per parcel
			$\begin{array}{r} \hline \text { Total Probable Cost } \\ \hline \text { Low Range } \\ \text { High Range } \\ \hline \end{array}$	com				

osesripion	${ }^{\text {aty }}$	Unit		$\underset{\substack{\text { Tooal } \\ \text { cost }}}{\text { cos }}$	sumbatals			
Recrycabes Starage Euluting					S4,28,7,15		88,77, 342	
		${ }_{8}^{\text {sr }}$	s1.30	so		so		
	${ }_{1,300}^{0}$	sr ${ }_{\text {cr }}^{\text {cr }}$	¢	S50,		s. ${ }_{\text {s.ar9 }}$		
	${ }_{6} 6$	cr ${ }_{\text {sr }}^{\text {cr }}$	cist	Sess		${ }_{\substack{\text { si,613 } \\ \text { so }}}^{\text {cose }}$		
	${ }_{60}^{60}$	cres	(siseo	${ }_{5}^{523400}$		satici4		
	${ }_{650}$		(inctis	ciste		sso.601		
	1	$\stackrel{\text { LF }}{\substack{\text { Lf }}}$	Ssi,000.00	S10,000		${ }_{\text {S19,909 }}^{\text {So }}$		Cutitiglemoval ofexsing spspalt. Disposal onste.
Sticle		$\begin{gathered} \substack{\text { s. } \\ \mathrm{s}} \\ \hline \end{gathered}$		(siction				
	70,000	${ }_{\substack{\text { sF } \\ \text { SF }}}$	Stis	s3s900		s761.702		5020 115, 050202
	${ }_{6}$	EA	Ssiolen	(sitaon				
	70.000	SF	${ }^{53300}$	S210,000		S400.997		MEANS Posio
Allamen	0	$\stackrel{\text { Ls }}{ }$	Soiol	so		so		
	:			so		so		
Uulity Conenetions								
	${ }_{250}$	$\stackrel{\text { L }}{\substack{\text { L } \\ \stackrel{\rightharpoonup}{F}}}$	Sols	so				
	0	$\stackrel{\text { L }}{\substack{\text { L }}}$	Stion	so		so		noci insaff builiding
	:	${ }_{\text {LT }}^{\text {sF }}$	St.30.0.00	so ${ }_{\text {so }}^{\text {so }}$		${ }_{\text {so }}^{\text {so }}$		
Subtalal Contaror Makups and General Condtitions				S4,281,715	$\frac{54}{51,28,7175}$	S8,17, 3, ${ }^{\text {a }}$		
Contracio fee			(e.c.					
Momer			(20\%	\$120,451				
Probable Construction cost					S5,420.651			
					s1.626.195			
Facility design allowances based on level of design	$\stackrel{1}{1}$		$\begin{aligned} & 250 \% \\ & \substack{50 \%} \\ & 0 \% \end{aligned}$					
					S1,127,495			
Aliounceio	1		sion siouou	(arcel
	!	${ }_{\substack{\text { PeR } \\ \text { PER }}}$	8.8.0\%					
				${ }_{\text {com }}^{\substack{30 \% \\ 50 \%}}$				

Description	aty	Unit	Unit cost	Total Cost cose	Subtotals	Total Cost wl Markup, Cont., \& Fee	$\begin{gathered} \text { Subtotals w/ } \\ \text { Markup, Cont., \& Fee } \\ \hline \end{gathered}$	${ }^{\text {Notes }}$
Satellite Maintenance and Staff - Maintenance Area ($250^{\circ} \times 300^{\circ}$)					\$1,254,184		\$2,39,397	
Earthworks, Pads and Roadways				\$10,834				
Stire topsoil (12" deep) and stockple onstie	${ }_{8,334}^{8,344}$	sr	\$1.30	\$10,001		${ }_{\text {S }}^{\text {S } 10,093}$		
Common excavation to Stockpile (2' deep)	0	cr	\$3.90	so		So		
	${ }^{8,334}$	SY	51.30 $\$ 3600$	S10,834		\$20,684		
	${ }_{30}$	cr Cr	s36.00 s36.00			${ }_{\text {s20 }}^{\text {s014 }}$		
Curb and gutter	0	LF	\$14.00	${ }_{\text {so }}$		${ }_{\text {so }}$		
Asphalt paving (90 thick) Roadway ${ }^{\text {a }}$ (erimeter Ditcting	${ }^{8,334}$	$\stackrel{\text { SY }}{\text { LF }}$	\$56.00	${ }_{\text {s0 }}^{541,710}$		\$1,034,194		
3-Bay Builiding (65' 125^{\prime})								
	${ }_{8,125}^{380}$	$\stackrel{\text { LF }}{\text { sF }}$	${ }_{\text {S }}^{\text {S17200 }}$	${ }_{\substack{\text { S66,880 } \\ 597,50}}$		${ }_{\text {\$ }}^{\text {\$1876, } 140}$		Incl in Receiving Pad Cost
Pre-Engineered Metal Building wsisid walls	8.125	SF	${ }^{535.00}$	\$284,375		\$542,908		120115
Lighting, Conduit, Wire \& Receeptacles	$\underset{\substack{8,125 \\ 150}}{ }$	SF		S4, S40,313 s20				MEANS D5020 115, D5020 210
Man doors	5	EA	\$2,000.00	\$10,000		\$19,091		
	${ }_{8.125}^{3}$	EA	\$11.000.00	S33,000 S24,375		${ }_{\substack{563.001 \\ \$ 46535}}$		Hititerical ost
Allownace for security system	8,125	Ls	S0.00	S\%		Stiso		
Allowance for cocts system Alowance for warehuse sheving	${ }_{1}$	$\stackrel{\text { LS }}{\text { LS }}$	S0.00 s20,000.00	\$80,		¢30,		Historical cost
Aboveground $2 \times$ walled 9500 L Luel storage tankpump	2	EA	\$11,000.00	S22,000		\$42,001		\$9500 purchase + \$1500 allownce for delivery/instal
Utiliy Connections								
Potable water comnection	0	$\stackrel{\text { LF }}{\text { LF }}$	s0.00	\$0 ${ }_{\text {so }}$		${ }_{\text {so }}^{\text {so }}$		Incl $\begin{aligned} & \text { n staf building } \\ & \text { Incli in staff building }\end{aligned}$
Electrical liei-i to transformer	500	$\stackrel{\text { LF }}{ }$	\$75.00	537,500		\$71,592		
(elecom connection	\bigcirc	$\stackrel{\text { LF }}{\text { LF }}$	S0.00 s80.00	so		so		Incl in staff building
Enviromental Protection								
$\underset{\text { Clay liner }}{\text { Grundwater monitoing wells }}$	${ }_{1}^{0}$	$\stackrel{\text { SF }}{\text { LS }}$	\$3.40 $\$ 7.50 .00$	s70,500		\$14,318		
Satellite Maintenance and Staff - Staff Bidg and Parking Area (100 ${ }^{\circ} \times 220^{\circ}$)					\$480,476		\$917,290	
Earthworks, Pads and Roadways Strip opsoil (12 deep) and stockpile onsite	2.445	sY	\$1.30	53,179		96,068		
Fine grade site, machine	2.445	sY	\$1.20	\$2,934		\$5,601		
Common excavation to Stockpile (2'd deep)	${ }_{2.45}$	cr	s3.90 S130	-50		S0088		
	2,45	cr	\$36.00	So		so		
Granular base (DOEA, 12 "thick) Curb and guter	${ }_{0}^{91}$	$\underset{\text { cr }}{\substack{\text { cr } \\ \text { cre }}}$	S36.00	S3, ${ }_{\text {S0 }}$		$\underset{\substack{\text { S6, } 224 \\ 50}}{\text { cose }}$		
Asphalt pauing (99" thick)	2,445	sr	\$65.00	\$158,925		\$303,408		
Roadway Perimeter Ditching	0	LF	\$1.50	\$0		so		
Staff Building 60' Pre-fab Changeroom Contruction Trailer	2	เs	\$90,000.00	\$180,000		\$343,643		
Utilit Connections								
Sanitar sewer comenection	600	$\stackrel{\text { LF }}{ }$	${ }_{885}^{5800}$	${ }_{\text {S51,000 }}$		${ }_{\text {¢907,366 }}$		
Electrical iei-in to transtormer	0	$\stackrel{\text { LF }}{\text { L }}$	S57.00	${ }_{530}{ }^{50}$		S0		Incli in maintenance building
Telecom connection Natural gas connection	${ }_{0}^{600}$	$\stackrel{\text { LF }}{\text { LF }}$	S60.00	$\underset{\substack{\text { S36,000 } \\ \text { S0 }}}{\text { St }}$		$\underset{\substack{\text { S68,729 } \\ \text { so }}}{\text { cen }}$		
$\frac{\text { Subtotal }}{\text { Contrator Markus and General Conditions }}$				\$1,744,660	$\frac{51,734,660}{\text { S461490}}$	\$3,31, 687	\$3,311,687	
$\frac{\text { Contractor Markups and General Conditions }}{\text { Contractor Home ofice }}$					\$461,419			
Contractor General Condtions			8.0\%	${ }_{\text {\$138,73 }}$				
Contractor fee Proiect Bondl/ nurance			8.6\%	$\underset{\substack{\text { \$45,101 }}}{\text { \$138,73 }}$				
Mobilization/Demobilization			3.0\%	\$55,240				
$\stackrel{\text { Probable Construction Cost }}{ }$					\$2,196,079			
Contingencies					5656,824			
Fracilty design llowances based on level of design		PER	25\%					
Market adiustment factor	1	${ }_{\substack{\text { PER } \\ \text { PER }}}$	5\%					
$\frac{\text { Consultant and Subcontractor Fees }}{\text { Allowance for geotechnical investigation }}$					\$456,784			
Allowance for geotechical ivestigation Allownece forenviromental perrititing	${ }_{1}^{0}$	$\stackrel{\text { LS }}{\text { LS }}$	S30,000.00 s0.00	${ }_{\text {so }}^{\text {so }}$				Assume 2 geotech investigation allowances per parcel.
Engineering desigig and municizal permiting fee Constrution manaement	1	PeR PeR	-	${ }_{\substack{\text { S228,392 } \\ \$ 228,922}}^{5}$				
Construction management fee	1	PER	8.0\%	\$228,392				
			Total Probable Cost		\$3,312,000			
			${ }_{\text {L }}^{\text {Low Range }}$ High Range	-	\$2,319,000 \$4,968,000			

Description	aty	Unit	Unit cost	${ }_{\substack{\text { Total } \\ \text { Cost }}}^{\text {cose }}$	Subtotals	$\begin{array}{\|c\|} \hline \text { Total Cost wl } \\ \text { Markup, Cont., \& Fee } \\ \hline \end{array}$		${ }^{\text {Notes }}$
HHW Building (65 $\times 75^{\prime}$)					\$124,125		S236,971	
Earthworks, Pads and Roadways								No new pad needed since building upgrade
Strip topsoil (12" deep) and stokkile onsite Fine grade ste, machine	:	SY ${ }_{\text {sY }}$	S1.30 81.20	s0		so		
Common excavation to Stockpile (2'deep)	:	cr	53.90 81.30	so		so		
Granular sub-basee (3 " minus, $6^{\prime \prime}$ thick)	0	cr	\$36.00	so		so		
Granuar base (DGAA, 12 " thick) Curb and guter	\%	$\underset{\text { cr }}{\substack{\text { cr } \\ \text { L }}}$	s36.00 S14.00	so		so		
Asphatt paving (90 thick)	0	sr	\$655.00	so		so		
RoadwayPPerimeter Ditching								
2-Bay Builiding Uprades (65' ${ }^{\text {c }}$ (55)			\$176.00	so				
Stirib-on-Grade concreete floor (8")	0	SF	\$\$12.00	so		so		
Pre-Engineered Meata Builing ysisid walls	0	$\stackrel{\text { sF }}{\text { sF }}$	${ }_{\substack{535.00 \\ 5570}}$	\$0		so		
	\bigcirc	SF	\$55.70	so ${ }_{\text {so }}$		so		MEANS D5022 115, D5020 210
Man doors	0	EA	S2,00000	\$0		so		
	${ }_{4.875}$	EA	\$11.00.00	\$14,625		s227,921		Historical cost
Allowance for security ssitem	1	$\stackrel{15}{ }$	\$5,000.00	55,000		${ }_{\text {S9,546 }}$		
Allowance for AlTre sis sitem	${ }_{1}^{1}$	$\stackrel{\text { Ls }}{\text { LS }}$	S20,000 S200	\$20,000		s38,183		Historical cost
Abovegronn 2x-waled 9500L Lstorge tanks	${ }_{1}$	EA	\$11,000.00	S22,000				\$9500 purchase + \$1500 allowance for deliveryinstall
Allownane for epopxy coating of exisiting soncratet floor	1	Ls	\$10,000.00	S10,000		\$19,991		
	1	$\stackrel{\text { Ls }}{\text { LS }}$	${ }_{\text {S }}^{\$ 15,000000000}$	${ }_{\text {S }}^{\text {S20,000 }}$				
Utility Connections								
Potable water coonnection	0	LF	\$0.00	so		so		Incl in staff building
Sen $\begin{aligned} & \text { Saniarir sewer conneation } \\ & \text { Electrical tiein tot tansomer }\end{aligned}$	0	Lif	\$75.00	s0		so		
Telecom connection Natural gas oonection	\bigcirc	$\stackrel{\text { LF }}{\text { LF }}$	\$80.00	so ${ }_{\text {so }}$		so		in staff buildin
Environmental Protection Clay liner Groundwater monitoring wells	${ }_{1}^{0}$	$\stackrel{\text { LS }}{\text { LF }}$		${ }_{\text {s7, } 500}^{\text {s0 }}$		(\$0		
Subtotal Contrator Markups and General Conditions				\$124,125	${ }_{\text {\$124,425 }}^{\text {S33,017 }}$	S236,971	\$236,971	
Contractor Home Office			5.0\%	56,206				
Contractor General Conditions			${ }^{8.0 \%}$	${ }_{\$ 9,930}$				
$\underset{\substack{\text { Contractor } \\ \text { Proee } \\ \text { Priect Bond/nsurance }}}{ }$			8.6\%	¢59,930				
Mobilization/Demobilization			3.0\%	${ }_{\text {S3, }}^{5}$				
Probable Construction Cost					\$157,142			
$\overline{\text { Contingencies }}$					547,143			
Facailiy design alowances based on level of design Marke adiusment accor	1	${ }^{\text {PeR }}$	${ }^{25 \%}$	${ }_{\text {S }} 539,286$				
$\underset{\substack{\text { Marketadijustment factor } \\ \text { Escalation }}}{\text { a }}$	1	${ }_{\substack{\text { PER } \\ \text { PeR }}}$	5\%	$\underset{\substack{\text { s7, } \\ \text { \$0 }}}{\text { 27 }}$				
Consultant and Subcontractor Fees					\$32,686			
Allowactio for foitichicalinivestigation	${ }_{1}$	$\stackrel{\text { Ls }}{\text { LS }}$	${ }_{\substack{\text { S30,00.00 } \\ \text { S0.00 }}}$	${ }_{\text {so }}^{\text {so }}$				Assume 2 geotech investigation alowances per parcel.
Enginering desigig and municipal permiting fee Constuction manaement ee	1	PER PeR	8.0\% 8.0%					
			Total Probable Cost		S237,000			
			$\xrightarrow{\text { Low Range }}$ High Range	-	¢\$166,000			

$\overline{\text { Contingencies }}$					\$536,647
Facility design allowances based on level of design	1	PER	25\%	${ }^{\text {\$447,206 }}$	
Market adjustment factor	1	PER	5\%	\$89,441	
Escalation		PER	0\%	so	
Consultant and Subcontractor Fees					\$372,075
Allowance for geotechnical investigation	0	LS	\$30,000.00	So	
Allowance forenvironmental permititing	1	Ls	\$0.00	so	
Engineering design and municipal permiting fee	1	PER	8.0\%	\$186,038	
Construction management fee	1	PER	8.0\%	\$188,038	
			Total Probable Cost		\$2,698,000
			Low Range	-30\%	\$1,889,000

Description	aty	Unit	Unit Cost	${ }_{\substack{\text { Total } \\ \text { Cost }}}^{\text {ate }}$	btotals	$\begin{array}{\|c\|} \hline \text { Total Cost w/ } \\ \text { Markup, Cont., \& Fee } \\ \hline \end{array}$	$\begin{gathered} \text { Subtotals wl } \\ \text { Markup, Cont., \& Fee } \end{gathered}$	${ }^{\text {Notes }}$
Site-wide Demolition and Disposal					\$1,501,708		\$2,86,952	
Demolition of exisiting infrastructure Pad demolitoon			\$55.00	\$1.074.231				
Buididing demolition	${ }^{191,511}$	Cr	\$54.00					Assume three $100^{\prime} \times 100^{\prime} \times 50^{\prime}$ building demo with density factor 0.2
Demolition debiris disposal	15,321		\$25.00	\$383,032		\$731,258		
Subtoal				\$1,501,708	\$1,501,708	\$2,86,952	\$2,86,952	
Contractor Markups and General Conditions					\$399,454			
Contractor Home Office			5.0\%	${ }_{\text {s75,085 }}^{\text {s720 }}$				
Contractor General Conditions Contractor Fee			- ${ }_{8}^{8.0 \%}$	${ }_{\text {\$120, }}{ }_{\text {S }}$				
Project Bondl/nsurance			2.6\%	${ }_{\text {S }}^{\text {S }}$				
Mobilization/Demobilization			3.0\%	\$45,051				
$\stackrel{\text { Probable Construction Cost }}{ }$					\$1,901,162			
					\$550,349			
$\xrightarrow{\text { Contugenclies }}$ Facily design allowances based on level of design		PER	25\%	\$475,290				
Mater Marke adiustent factor	1	PeR PER	5\%	$\underset{\text { s95.058 }}{\text { s0 }}$				
Consultant and Subcontractor Fees					\$395,442			
Allowance for geotecenhical investigation	${ }_{0}$	$\stackrel{L s}{ }$	\$30,000.00	${ }_{50}$				Assume 2 geotech investigation allowances per parcel.
Alownece for environmental permitting Engineering design and municipal permiting fee	1	${ }_{\text {PER }}$	${ }_{\substack{50.00 \\ 8.0 \%}}$	(1907				
Construction management fee	1	PER	8.0\%	\$197,721				
			Total Probable Cost					
			$\underset{\substack{\text { Low Range } \\ \text { High Range }}}{\text { Len }}$. ${ }_{\text {50\% }}$	$\$ 2,007,000$ $\$ 4,301,000$			

Appendix 4A-2

Capital Cost Estimates
 Plan Concept 2

Rough Order of Magnitude (Class 4) Cost Opinion
Renewable Placer - Waste Action Plan
Roseville, CA
Date: Oct-30-2018

Description	Qty	Unit	Unit Cost w/ Markup, Cont., \& Fee	Total Cost w/ Markup, Cont., \& Fee	Subtotals w/ Markup, Cont., \& Fee
Plan Concept 2 Critical Elements					\$569,855,665
Public Area					
Public Area - Roadways	1	LS	\$1,799,189	\$1,799,189	
Public Area - Buyback ($220{ }^{\prime} \times 230^{\prime}$)	1	LS	\$2,655,780	\$2,655,780	
Public Area-HHW ($300 \mathrm{x} \times 100^{\prime}$)	1	LS	\$1,787,519	\$1,787,519	
Public Area - Reuse Store Area ($155^{\prime} \times 140^{\prime}$)	1	LS	\$1,909,078	\$1,909,078	
Public Area - Tipping Area	1	LS	\$8,856,534	\$8,856,534	
C\&D					
C\&D - C\&D Pad ($1000{ }^{\prime} \times 530$)	1	LS	\$10,175,809	\$10,175,809	
C\&D - Processing Line	1	LS	\$7,922,881	\$7,922,881	
Composting					
Compost - Green Waste Pad (210 ' 2225^{\prime})	1	LS	\$1,404,545	\$1,404,545	
Compost - Wood Waste Pad (115' $\times 225$)	1	LS	\$769,156	\$769,156	
Compost - Outdoor Receiving Area (90' $\times 200$)	1	LS	\$2,462,377	\$2,462,377	
Compost - Screening and Product Storage Pad ($400{ }^{\prime} \times 350$)	1	LS	\$5,932,451	\$5,932,451	
Compost - Temporary Positive ASP System	1	LS	\$470,829	\$470,829	
Compost - Active Composting System (205' x 880')	1	LS	\$14,811,623	\$14,811,623	
Compost - Biofilter ($135{ }^{\prime} \times 880$)	1	LS	\$5,122,623	\$5,122,623	
Compost - ASP Curing System ($185{ }^{\prime} \times 880{ }^{\prime}$)	1	LS	\$12,196,234	\$12,196,234	
Compost - Dedicated Storm Water Ponds	1	LS	\$1,057,713	\$1,057,713	
Compost - Miscellaneous Equipment	1	LS	\$12,409	\$12,409	
Landfill					
Stockpile Relocation	1	LS	\$26,727,792	\$26,727,792	
Landfill Construction	1	LS	\$254,936,766	\$254,936,766	
Unlined Area Waste Excavation	1	LS	\$102,344,916	\$102,344,916	
Landfill Closure	1	LS	\$106,499,440	\$106,499,440	
Plan Concept 2 Necessary Supporting Elements					\$45,428,470
Admin					
Admin Staff Bldg (10,000 sf or $100{ }^{\prime} \times 100$)	1	LS	\$15,493,528	\$15,493,528	
Admin Staff Parking ($25,000 \mathrm{sf}$)	1	LS	\$172,583	\$172,583	
Main Entrance					
Main Entrance - Roadways	1	LS	\$802,788	\$802,788	
Main Entrance - Scale/Building	1	LS	\$1,548,557	\$1,548,557	
Western Entrance					
Western Entrance - Roadways	1	LS	\$775,106	\$775,106	
Western Entrance - Scale/Building	1	LS	\$360,125	\$360,125	
Overpass					
Overpass	1	LS	\$9,278,433	\$9,278,433	
Recovered Materials Storage					
Recyclables Storage Building	1	LS	\$8,281,730	\$8,281,730	
Primary Maintenance Facility					
Primary Maintenance - Maintenance Area ($250^{\prime} \times 300{ }^{\prime}$)	1	LS	\$1,842,538	\$1,842,538	
Satellite Maintenance and Staff Facility					
Satellite Maintenance and Staff - Maintenance Area (250' $\times 300^{\prime}$)	1	LS	\$2,394,397	\$2,394,397	
Satellite Maintenance and Staff - Staff Bldg and Parking Area ($100{ }^{\prime} \times 220$)	1	LS	\$0	\$0	
Stormwater Pond					
New Storm Water Ponds	1	LS	\$4,478,684	\$4,478,684	
Plan Concept 2 Non-Critical Elements					\$0
Main Site HHW Facility					
Plan Concept 2 Existing Features to be Removed					\$217,629
Compost Pond Removal					
Plan Concept 2 General Elements					\$24,862,737
Special Permits and Allow					
Special Permits	1	LS	\$6,973,364	\$6,973,364	
Geotechnical Investigations	1	LS	\$180,000	\$180,000	
Wetlands Mitigation					
Site Beautification					
Facility Beautification	1	LS	\$3,143,189	\$3,143,189	
Site-wide Demolition					
Site Utilities					
Shared Site Utilities	1	Ls	\$3,061,096	\$3,061,096	
MRF Upgrade to TS					
MRF Upgrade to TS	1	LS	\$415,766	\$415,766	
Total Probable Cost				\$640,364,501	\$640,364,501
			Total Probable Cost		\$640,365,000
			Low Range High Range	$\begin{aligned} & \hline-30 \% \\ & 50 \% \\ & \hline \end{aligned}$	$\begin{array}{r} \$ 448,256,000 \\ \$ 960,548,000 \\ \hline \end{array}$

Renewable Placer - Waste Action Plan

Roseville, CA

Date: Oct-30-2018

Common Construction Unit Rates	Unit Cost	Unit	Variable	Notes
Earthworks, Pads and Roadways				
Strip topsoil (12" deep) and stockpile onsite	\$1.30	SY	topsoil_strip	Assumes stockpile along west property boundary, scraper haul
Fine grade site, machine	\$1.20	SY	finegrade	MEANS 312216
Common excavation to Stockpile (2' deep)	\$3.90	CY	common_ex	MEANS 3320 15, Assume stockpile along west property boundary
Subgrade preparation	\$1.30	SY	subgrade_prep	
Granular sub-base (3" minus, 6 " thick)	\$7.30	SY	gran_subbase	CALTRANS Historical 260203
Granular base (DGA, 12" thick)	\$36.00	CY	gran_base	CALTRANS Historical 260303
Curb and gutter	\$14.00	LF	curb_gutter	MEANS 321613
Asphalt paving (9" thick)	\$65.00	SY	asphalt	CH2M estimate
Roadway/Perimeter Ditching	\$1.50	LF	ditching	Grader/dozer work
Environmental Protection				
Clay liner (0.5 m thick)	\$3.40	SF	clay_liner	CH2M Estimate \$55/cy, 20" thick
Groundwater monitoring wells	\$7,500.00	LS	GW_wells	CH2M Estimate (3 wells to 30 ft , casing protector)
Synthetic pond liner (supply and install)	\$6.30	sy	HDPE_liner	CH2M Historical, 40 mil
Buildings and Concrete				
Strip Footing (2' thick, 3^{\prime} wide)	\$176.00	LF	strip_footing	0.22 cy per LF
Push Wall Footing (2^{\prime} 'thick, 8 ' wide)	\$570.00	LF	push_wall_footing	0.6 cy per LF
Push Walls (12' high, 12' thick at top, 18" thick at base)	\$600.00	LF	push_wall	0.6 cy per LF
Slab-on-Grade concrete floor (8")	\$12.00	SF	concrete_slab	after verbal discussions with local contractor
Utility Connections				
Potable water connection	\$0.00	LF		
Sanitary sewer connection	\$0.00	LF		
Electrical tie-in to transformer	\$75.00	LF	buried_elec	450 KVA total connected load/ 300 KVA operating demand
Telecom connection	\$0.00	LF		
Natural gas connection	\$0.00	LF		
Markups and Fees	Rate	Unit	Variable	Notes
Contractor Mob and General Conditions				
Contractor Home Office	5.0\%		CHO	Assumes multi-trade GC does most all of the work
Contractor General Conditions	8.0\%		CGC	Assumes 12 month construction schedule
Contractor Fee	8.0\%		CF	
Project Bond/Insurance	2.6\%		PBI	
Mobilization/Demobilization	3.0\%		Mob_Demob	
Contingencies:				
Facility design allowances based on level of design	25\%		design_cntngy	
Market adjustment factor	5\%		MAF	Construction market is very busy
Escalation	0\%		escalation	use 3\% per year
Consultant and Subcontractor Fees:				
Engineering design and municipal permitting fee	8.0\%		Eng_fee	
Construction management fee	8.0\%		CM_fee	
Estimate Ranges:				
Low Range	-30\%		low_range	
High Range	50\%		high_range	

Notes:
The cost estimates are based on 1st quarter 2016 rates from the CALTRANS historical costs (concrete and import fill), MEANS (earthwork), CH2M historical values, Golder historical values, and calculated values where indicated. Cost estimates are largely based on 2016/2017 values because cost development commenced in 2017, prior to Board meeting in Dec 2017. A CH2M/Jacobs cost estimator has
These AACEI Classification Class 4 cost estimates are assumed to represent the actual total installed cost within the range of -30 percent to +50 percent (\% based on AACEI) of the cost indicated.
3 The estimate is prepared with due diligence with the available information and under normal operations. However this should be subject to market demands and circumstances. The possibility of securing a competive bid process is questionable and should be taken into consideration.
4 Factors that may affect the estimate on the following issues include escalation, premium on labor, engineering
5 The final cost do the project will be subject to labor rates, material cost, actual site conditions, availability of labor, material and equipment, final project scope, final project schedule (flexible or fixed), public consultation and input, and other mitigating factors (e.g. timing of construction and award). As a result, the final project cost may defer from the presented budget. Due to facts mentioned, the funding of the project should be carefully reviewed prior to establishing the final budget.
6 It is assumed that there is no hazardeous materail to remove and dispose
7 It is assumed that the work will performed under a 40-hr, normal workweek schedule. No acceleration costs included..
8 It's assumed that all materials are readibly available at no premium costs, that delivery is normal costs, and the contractor has adequate laydown and site facilities.

Exclusions/Qualifications:

Equipment specifications not identified.
2 Federal and state sales tax are included in unit rates.
3 Municipal fees \& licences not included
4 As the design is at conceptual stage, the tie-ins to existing equipment and facilities have not being identified.
5 Rock excavation not included
Dewatering is not included
7 Escalation is not included. Values are in 1st Qtr 2016 values

Description	aty	Unit	$\underbrace{\text { Cost }}_{\text {Unit }}$	${ }_{\substack{\text { Total } \\ \text { cost }}}^{\text {ate }}$	Subtotals		$\begin{gathered} \text { Subtotals } w / 1 \\ \text { Markup, Cont., } \& \text { Fee } \end{gathered}$	${ }^{\text {Notes }}$
C8D.C8DPad (1000' ${ }^{5350^{\circ} \text {) }}$								
Thworks, Pads and Roadways								
Stirine topsoil (12" deep) and stockpile onste	${ }_{5}^{58,889} 5$	sy	\$1.30	${ }_{\substack{\text { s70,067 } \\ \text { s7,566 }}}$		${ }_{\text {S }}^{\text {S146,155 }}$ S134,912		
Common excavation to Stockpile (2' deep)	0	cr	S3.90	${ }_{50}$		so		
	58.889	sY	\$1.30	576.556		\$146,155		
	${ }_{2} .181$	cr	S36.00	S78.519		\$149.902		
Curb and gutter	0	LF	S14.00	${ }_{\text {so }}$		so		
Asphalt paving (9"thick	${ }^{56,889}$	$\underset{\substack{\text { SY } \\ \text { LF }}}{\text { ck }}$	${ }_{\text {S17 }} 865000$	$\underset{\substack{\text { s, } \\ \text { sol }}}{\text { c/85 }}$		st, ${ }_{\substack{\text { so }}}^{\text {s7 }}$		
Roaway Peorimeter itiching	0	Ls	\$75,000.00	${ }_{\text {S0 }}$		so		
Overhang Roof Overhang with structural column support (no walls)	20,000	SF	S60.00	\$1,200,000		\$2,290,954		Assume cover for $100^{\prime} \times 200^{\prime}$ portion of C\&D pad to shield processing line from rain; not a building, just an open-air roof structure
Enviromental ProtectionClay liner								
Clay y iner Groundwater monitoring wells	\bigcirc	$\stackrel{\text { SF }}{\text { LF }}$	S3,40 \$7,50.00	so		so ${ }_{\text {so }}$		
$\xrightarrow{\text { C8D - Processing Line }}$ 40-5 ton					\$4,150,000		s7,92,881	
-Processing Ine, inculuding shipping, instalation, and startup	1	EA	\$4,000,000.00	\$4,000,00		\$7,63,512		Buik Handiling Quote, Sept 2018
Utilit ConnectionsPotable water connection								
Potable water comnection	2,000	$\stackrel{\text { LF }}{\text { LF }}$		${ }_{\text {so }}^{\text {so }}$		${ }_{\text {so }}^{\text {so }}$		Assume can use for rocoess water and potable use
Eleatrical itiol to tonstormer	2,000	Le	\$57.00	\$150,000		S286,369		Assume electrical supply is present for existing C8D and can use this with extension
Telecom commection Natural gas oonnection	0	$\stackrel{\text { LF }}{\text { LF }}$	S0000 S0000	${ }_{\text {S0 }}^{\text {S0 }}$		¢0		
Subtotal				\$9,480,082	\$9,480,082	\$18,098,690	\$18,098,690	
$\frac{\text { Contractor Markups and General Conditions }}{\text { Contractor Home ofice }}$					\$2,521,702			
Contractor General Conditions			${ }^{\text {8.0\%\% }}$	(
Contractor Proee Priect Bondl nusuance			2.6\%					
Mobilization/Demoboilization			3.0\%	\$284,402				
Probable Construction Cost								
Faailit design allowances based on level of design			25\%	\$3,000.446				
Market adiustment factor	1	${ }_{\substack{\text { PER } \\ \text { PER }}}$	5\%	$\underset{\substack{\text { s600,089 } \\ \text { so }}}{\text { coser }}$				
Consultant and Subcontractor Fees ${ }^{\text {a }}$ (2,96, 371								
Allowance for geotechnical investigation	${ }_{1}$	$\stackrel{\text { LS }}{\text { LS }}$	$\underset{\substack{\text { S30.000.00 } \\ \text { S0.00 }}}{\text { a }}$	${ }_{\text {so }}^{\text {so }}$				Assume 2 geotech investigation alowances per parcel.
			Total Probable Cost					
			Low Range High Range	-30\%	$\$ 12,670,000$ \$27,149,000			

Doscripion	${ }^{\text {aty }}$	Unit	$\underbrace{\text { cost }}_{\text {Unitt }}$	$\underset{\substack{\text { Total } \\ \text { cost }}}{\text { cose }}$	Subotals			
Overpass					\$4, 860,037		59,278,433	
		$\begin{aligned} & \mathrm{sF} \\ & \mathrm{sF} \\ & \text { sF } \\ & \mathrm{sF} \\ & \mathrm{sF} \end{aligned}$	$\begin{gathered} \$ 4.00 \\ \$ 2.00 \\ \$ 20 \\ \$ 150 \\ \$ 300 \end{gathered}$	$\begin{gathered} \text { Sl1512000 } \\ \hline \end{gathered}$				
$\frac{\text { Subital }}{\text { Contactor Tarkus sand General Conditions }}$				S4, 860.037		s9,278,433	S9,278,433	
Corrasio fee								
					36,12, 807			
Contingencies Facility design allowances based on level of design Market adjustment factor Escalation		$\begin{aligned} & \text { PRERER } \\ & \substack{\text { Per }} \end{aligned}$	$\begin{gathered} 250 \% \\ 50 \% \\ 0 \% \end{gathered}$		${ }_{51,845.842}$			
					\$1,297,74			
Allowance for geotechnical investigation Engineering design and municipal permitting fee Construction management fee		$\begin{gathered} \text { Lise } \\ \text { per } \\ \hline \text { PR } \end{gathered}$	$\begin{gathered} \substack{530.0 .0000000 \\ \text { join } \\ 8.00 \%} \\ 8.0 \end{gathered}$					Assume 2 goolect invesigation alownoces per parcel
			Total Probable Cost Low Range High Range	come				

Doscripion	aty	Unit	$\underbrace{\substack{\text { unit }}}_{\text {cost }}$	$\underset{\substack{\text { roat } \\ \text { cost }}}{\text { cost }}$	Subtat			
					\$4,33,7,96		S8,28,7,30	
	\bigcirc	${ }_{\text {sV }}^{\text {sV }}$	¢1,30	${ }_{50}^{50}$		${ }_{\text {so }}$		
	$\substack{1.30 \\ 600}_{\substack{\text { a }}}$	cor		Stis				
comer	0	${ }_{\text {cr }}$	S3800	50		so		
Cuthen	60	$\stackrel{\text { cren }}{\substack{\text { sr }}}$		(540		some		
	\%	${ }_{\text {Lis }}^{\text {LF }}$	Sis.0.50,	Stion		S19091		Inglemoval ofexsing sasplat. Disposal onsite
Storage iulidig (175 \times 400)								
	(10,500	${ }_{\substack{\text { sF } \\ \text { sF }}}^{\text {cher }}$	cistition			cois		
	70,000	${ }_{\substack{\text { sF } \\ \text { SFe }}}^{\text {sfe }}$	cisisio	Sssesioo				MEANS D5520 115, 05220210
	$\stackrel{7}{7}$	${ }_{\text {SFe }}^{\text {SEA }}$	Stisision	Stitaoo		sseifire		
	70.000		ciol	S220,000				Hisens torio
	-	${ }_{\text {L5 }}^{15}$		so		so		
	:		cis	${ }_{\text {so }}^{50}$		${ }_{\text {so }}^{\text {so }}$		Hessorial Ssost
Uulity Conneraios								Ind in staft buic
	1.000	,	(sin)	Sis.		sisi,		
	${ }^{1}$		(s.0.00	so		so		Ind in staff builiding
Enviommenal Proaction								
	:	${ }_{\text {sf }}{ }^{\text {sf }}$	${ }_{\text {s7,500.00 }}^{\text {S.a }}$	${ }_{50}^{50}$		so		
				54.377 .965		S8,281,730	S8,281,730	
			${ }_{\text {cos }}^{5.0 \%}$					
			(20\%	S130,139				
Probable construction cost					55,991,864			
Contigonnies					S1,647,59			
Facility design allowances based on level of design Market adjustment factor Escalation	1	(ekR	$\begin{aligned} & 25 \% \\ & 0 \% \\ & 0.5 \end{aligned}$					
					S1,1423,38			
	1	-	soiouo	${ }_{50}$				Assume 2 geolectivestigation alownexes per parcel.
	1	${ }_{\substack{\text { PeR } \\ \text { PeR }}}$						
			$\begin{array}{r} \hline \text { Total Probable Cost } \\ \hline \text { Low Range } \\ \text { High Range } \\ \hline \end{array}$	${ }_{\text {cosem }}^{\text {50\% }}$				

Description	aty	Unit	Unit cost cost	${ }_{\substack{\text { Total } \\ \text { cost }}}^{\text {cta }}$	Subtotals	Total Cost w/ Markup, Cont., \& Fee	$\begin{gathered} \text { Subtotals wl } \\ \text { Markup, Cont., \& Fee } \end{gathered}$	Notes
New Storm Water Ponds					\$2,345,932		\$4,47,684	
C8D Storwater Pond	1		\$15,000.00	\$15000		${ }_{528.637}$		Source: Pond Costs, XISx; Prainage Calculations. XISx; costs from Golder WRSL Estimate; assume 1000-ye
Prosioct Management	I	Ls	\$88,000.00	S80,000		\$152,730		
Mob and Demob	1	$\stackrel{\text { cs }}{ }$	\$15.000.00	\$15,000		${ }_{\text {s28,637 }}$		
$\underset{\substack{\text { Clearing and Grubing } \\ \text { Exavation }}}{\text { a }}$	${ }^{8.167}$	$\xrightarrow{\text { SY }}$	\$ ${ }_{\text {\$1.30 }}$	\$\$10.617				
Landilils Stormwater Pond	1	15	\$15000.00	\$15,000		${ }_{528.637}$		Source: Pond Costs, x\sx; Drainage Calculations. \times XSx; Costs from Golder WRSL Estimate; assume 1000-ye
${ }^{\text {Project Management }}$	1	${ }_{\text {LS }}$	\$1550,000000	\$1550,000		${ }_{\text {S286,369 }}^{52867}$		
Mob and Demob	1	${ }^{\text {Ls }}$	\$15,000.00	\$15,000		${ }^{528,637}$		
Unoad Geosynthetics	${ }_{86,667}^{1}$	¢ ${ }_{\text {cr }}^{\text {s\% }}$	$\underset{\substack{\text { S20.000.00 } \\ \$ 130}}{\text { cise }}$	\$20.000				
	${ }_{1}^{80,667} 1084$	${ }_{\text {cr }}$	\$ ${ }_{\text {s.250 }}$	\$112,667		\$215,09 S919,644		
HDPE Doublesided Textured Geomembrane	783,950	SF	\$1.60	\$1,25, 320		\$2,39,657		
Public Crea Starmwater Pond			\$15,000.00	\$15,000				Source: Pond Costs.xssx; Drainage Calculations.xIsx; costs from Golder WRSL Estimate; assume 1000-ye
		${ }_{\text {LS }}$	\$88,000.00	${ }_{\text {s80,000 }}$		\$152,730		
Mob and Demob	1		\$15,000.00	\$15,000		${ }_{\text {S22,637 }}$		
Cleating and Grubbing	8,333 10, 162	SY CY	($\begin{gathered}\$ 1.30 \\ \$ 250\end{gathered}$	\$ $\begin{gathered}\text { \$10,833 } \\ \$ 25.504\end{gathered}$				
Excavation			\$2.50	\$25,404		\$48,500		
Subtotal				\$2,35,932	\$2,345,932	\$4,478,684	\$4,47,684	
Contractor Markup and General Conditions								
			${ }_{8}^{5.0 \%}$					
Contractor Fee			${ }^{8.0 \%}$	\$1877,675				
Prober Pondil surance			${ }_{\text {2.0\% }}^{2.6 \%}$					
$\stackrel{\text { Probable Construction Cost }}{ }$					\$2,969,950			
Contingencies					\$880,985			
Facility design alowancos based on level of design Marke adiustment factor	1	${ }_{\text {PeR }}$	${ }^{25 \%}$	${ }_{\text {S7424,487 }}$				
Marker	1	($\begin{gathered}\text { PER } \\ \text { PER }\end{gathered}$	5\%	\$148,497 ${ }_{\text {so }}$				
Consultant and Subcontractor Fees					\$617,750			
Allowarce for feotechnical investigation	${ }^{0}$	${ }^{\text {Ls }}$	\$30,000.00	so				Assume 2 geotech investigation allowances per parcel.
Alownef for environmental permititig	1	${ }_{\text {LS }}^{\text {LS }}$	50.00					
Engineesing design and municipal permiting fee Construction management fee	1	PeR PER	8.0\%	($\begin{gathered}\text { \$3088,875 } \\ \$ 30875\end{gathered}$				
			Total Probable Cost		\$4,479,000			
			Low Range High Range	-	S4,43,000 $56,790,000$			

Description	aty	Unit	$\underbrace{\text { Cost }}_{\text {Unit }}$	${ }_{\substack{\text { Total } \\ \text { cost }}}^{\text {ate }}$	Subtotals		$\begin{gathered} \text { Subtotals wis } \\ \text { Markup. Cont, } \& \text { Fee } \end{gathered}$	${ }^{\text {Notes }}$
Special Permits					\$6,973,364		\$6,973,364	
Soid Waste Facility Permiting								Source: pemitillitxisx Assume arrady covered in LF Modues she
${ }_{\text {Len }}^{\text {Landius }}$ Compostaciliy	${ }_{1}$	$\stackrel{\text { Ls }}{ }$	\$4,423,996.24	${ }_{\text {S4,423,996 }}$		\$4,423,996		
Environmental/ Land Use/ Local Permitting Entire facility	1	เs	2,549,367.66	\$2,549,368		\$2,54,368		Assume cost is 1% of landilil construction capital cost applied 2 years before landifl construction on weste
Geotechnical Investigations					\$180,000		\$180,000	Assume 6 investigations beginning in Year 1 every 5 years.
Geotechnical investigation Allownef for seotechnical investigation	6	Ls	\$30,000.00	\$180,000		\$180,000		Assume 2 per parcel
Subtotal				57,153,364	s7,153,364	S7,153,364	57,15,364	
$\frac{\text { Contractor Markup and General Conditions }}{\text { Contracor Home office }}$			0.0\%	so	so			No contractor markups for permititing
Contractor General Conditions			0.0\%	so				
Contractor Fee			0.0\%	${ }^{50}$				
Proied Bondilnsurance			-	so ${ }_{\text {so }}$				
Probable Construction Cost					\$7,15,364			
Contingencies					so			
Facility design allowances based on level of design		PER						Contingency already builit int costs from Compost
Marke adiustment factor	1	${ }_{\substack{\text { PER } \\ \text { PER }}}$	0\%	so ${ }_{\text {so }}$				
Consultant and Subcontractor Fees					so			
Allowace for geotechnical investigation	${ }_{1}$	$\stackrel{\text { LS }}{\text { LS }}$	S30.000.00 ${ }_{\text {so.00 }}$	so				Assume 2 geotech investigation allowances per parcel.
Engineering desigig and municical permiting fee	1	${ }_{\text {PeR }}^{\text {PeR }}$	- 0.0%	\$0				Permiting fee built in
Construction management fee	1	PER	0.0\%	so				No construction management fee
			Total Probable Cost		\$7,154,000			
				-	\$5,008,000 10,731,000			

Description	aty	Unit	Unit cost	Total cost	tals	Total Cost w/ Markup, Cont., \& Fee		${ }^{\text {Notes }}$
Facility Beautification					\$1,646,400		¢3,143,189	
Uigatio from exisiting non-potale water surree								
Main irigation contros system (8.ssation controler)	${ }_{8}^{1}$	$\stackrel{\text { Ls }}{\text { EA }}$	${ }_{\text {S }}^{\text {S2, } 200000}$ \$1,20.00					Includes
Irrigation main piping and trenching	33,200	LF	\$14.00	\$464,800		5887,363		Assume perimeter of western property + perimeter of main and eastern merged; mixed vegetation
Lateral piping	16,600		\$12.00	\$199,200		\$380,298		Assume lateral piping is is 5 \% of main piping, includes sprinker heads
Signal wiring Tiein $_{\text {connection to exisiting main header }}$	3,320	EA	S0.80	$\underset{\substack{\text { S2,.56 } \\ \text { \$700 }}}{ }$		$\underset{\substack{\text { S } \\ \$ 1,336}}{\text { S }}$		Assume connection to vave stations; 10% of main piping
Enhanced vegetation								
Topsoil	6,148	cr	530.00	\$184,444		¢352,128		Imported topsil spread along perimeter, 10 ftwide 6 " deppth
Vegetation along perimeter of site	33,200	LF	\$3.00	S99,600		\$190, 149		Assume new fencing perimeter to enclose new landifll on westerm property + perimeter of main and C\&D
Landscaping/vegetation at new admin building Landscaping/vegetation at main entrance	$\begin{aligned} & 1,000 \\ & 500 \end{aligned}$	$\mathrm{SF}_{\text {SF }}$	$\$ 2.00$ $\$ 3.00$	$\begin{gathered} s 2,000 \\ \hline \end{gathered}$		$\$ 3,818$ $\$ 2,864$		Assume $1,000 \mathrm{sf}$; mixed vegetation (trees, shrubs) for commercial property Assume 500 sf; mixed vegetation (trees, shrubs) for commercial property
Fencing 6-ft chain link or comparable Fence gates for maintenance truck access, if needed	${ }^{18,900} 6$	EA	$\begin{gathered} \$ 35.00 \\ \$ 3,000.00 \end{gathered}$	$\$ 661,500$ \$18,000		$\begin{gathered} \$ 1,262,888 \\ \$ 34,364 \end{gathered}$		Assume existing fencing will be used; this is only new fencing to enclose landfill on western property and C Assume 6 gates
Subtotal				\$1,646,400	\$1,646,400	\$3,14, 189	\$3,143,189	
Contractor Markup and General Conditions					\$437,943			
Contractor Home oftice Contractor Genera Condions			8.0\%					
Contractor Fee			8.0\%	\$131,712				
			${ }_{3.0 \%}^{2.6 \%}$					
Probable Construction Cost					\$2,084,343			

Description	aty	Unit	Unit cost cost	${ }_{\substack{\text { Total } \\ \text { cost }}}^{\text {cose }}$	Subtotals	$\begin{gathered} \text { Total Cost w/ } \\ \text { Markup, Cont., \& Fee } \\ \hline \end{gathered}$	$\begin{gathered} \text { Subtotals wl } \\ \text { Markup, Cont., \& Fee } \end{gathered}$	${ }^{\text {Notes }}$
Shared S Site Utilities					\$1,603,400		\$3,061,096	
Sewer line exter	5,300	LF	\$280.00	\$1,484,000		\$2833.146		Assume 36" diameler or other standard size for sanitary sewer through industrial zone; length is along
Sewer line piping Stu--ut of future connections								Fiduyment Rd between Sunsee Elvd and Athens Ave
Manhole	11	EA	S9,000.00	\$99,400		\$182, 131		Assume manhole every 500 If
Subtoal				\$1,603,400	\$1,603,400	\$3,061,096	\$3,061,096	
Contractor Markups and General Conditions					\$426,504			
Contractor Home office Contractor General Conditions			${ }^{5.0 \% \%}$					
Contractor Fee			8.0\%	\$128,272				
			${ }_{\text {2.6\% }}$	(${ }_{\text {S41,688 }}^{\text {s4, }}$				
Probable Construction Cost					\$2,029,904			
Contingencies					5608,971			
Fasility desisn allowances based on level of design Marke adiustment factor	1	${ }_{\substack{\text { PeR } \\ \text { PRe }}}$	${ }_{50 \%}^{25 \%}$	${ }_{\text {S }}^{\text {S507.476 }}$				
$\underset{\substack{\text { Marceladijustment factor } \\ \text { Escalation }}}{\substack{\text { a }}}$	1	${ }_{\substack{\text { PeR } \\ \text { PRR }}}$	0\%	S101,495 ${ }_{\text {s }}$				
Consultant and Subcontractor Fees					\$422,220			
Allowance tor geotechnical investigation Allowance fore environmental permiting	${ }_{1}^{0}$	$\stackrel{\text { LS }}{\text { LS }}$	\$30,000.00 50.00	${ }_{\text {so }}^{\text {so }}$				Assume 2 geotech investigation alowances per parcel.
Engineering design and municipal permititing tee	1	${ }_{\text {PER }}$	8.0\%	\$211,110				
Construction management tee	1	PER	8.0\%	\$211,110				
			Total Probable Cost		\$3,062,000			
			$\xrightarrow{\text { Low respe }}$	- ${ }_{\text {-30\% }}^{50 \%}$	$\$ 3,062,000$ $\$ 4,144,000$ 593,000			

Description	aty	Unit	Unit cost	$\begin{aligned} & \text { Total } \\ & \text { Cost } \end{aligned}$	Subtotals	$\begin{gathered} \text { Total Cost w/ } \\ \text { Markup, Cont., \& Fee } \end{gathered}$	$\begin{gathered} \text { Subtotals wl } \\ \text { Markup, Cont., \& Fee } \\ \hline \end{gathered}$	${ }^{\text {Notes }}$
MRF Upgrade to TS					\$217,778		\$415,766	
Crimores	${ }_{211}^{112}$	cy	530.00 66500	$\underset{\substack{53,333 \\ \text { s14,44 }}}{ }$		$\underset{\substack{\text { S6,364 } \\ \text { 2 } 2756}}{ }$		Assume excavate two bays to instal scales, 100 feet length by 20 feet width with 9 "thick exising asphat
Asphat paving (99" thick)	${ }^{222}$	sY	\$65.00	\$14,444		\$27,576		
Scales and Instrumentation Truck scale (100') supply and install include concrete footings	2	เs	\$100,000.00	\$200,000		\$381,826		
Subtotal				\$217,778	S2177,778	\$415,766	\$415,766	
Contractor Markup and General Conditions					\$57,229			
Contractor Home Office ${ }_{\text {contractor }}^{\text {ceneral Conditions }}$			${ }^{5.0 \%}$	(10.889				
Contractor Fee			8.0\%	\$17,422				
Proiect Bondinsurance			${ }_{3.0 \%}^{2.6 \%}$					
Probable Construction Cost					\$275,707			
Contingencies					¢82,712			
Facility design allowances based on level of design								
Mater	1	${ }_{\substack{\text { PeR } \\ \text { PER }}}$	5\%					
Consultant and Subcontractor Fees					\$57,347			
Allowance for geotech hicali ivestigation	1	$\stackrel{\text { LS }}{\text { LS }}$	$\xrightarrow{533.000 .00} 5$	s0				Assume 2 geotech investigation allowances per parcel.
Alowner $\begin{aligned} & \text { Alownefor envionmental permiting } \\ & \text { Engineering design and municipal permititing tee }\end{aligned}$	1	${ }_{\text {PER }}^{\text {LS }}$	80.00	S22,673				
Construction management fee	1	PER	8.0\%	\$28,673				
			Total Probable Cost					
			Low Range High Range	$\xrightarrow{-30 \%}$	s292,000 s624,000			

Appendix 4A-3
Capital Cost Outlays

Appendix 4A-3
 Capital Cost Outlay Plan Concept 0

Client: WPWMA Proiect: Renewat
 Proiect: Renewable Placer - Waste Action Plan Date:
 Date: Nov-16-2018 Workseet Intial Capital and Replacement Inputs Plan Concept: 0

Client: WPWMA Proiect: Renewab
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 Date: :Nov-16-2018 Workshoet. Intital Capital and Replacement Inputs Plan Concept: 0

Client: PPWMA Proiect: Renewab
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 Worksheet: Intitial Capital and Replacement Inputs Plan Concept: 0

			2081 59		2082 60			2083 61		2084 62	2085 63			2086 64			2087 65		2088 66		2089 67		2090 68			2091 69			2092 70		2093 71			2094 72			${ }_{73}^{2095}$			
INITIAL CAPITAL AND REPLACEMENT COSTS																																								
$\underset{\text { Necessary Supporting Elements }}{\text { dimin }}$ Seplacement Frequency Interval (Year:																																								
${ }_{\text {Admin }}^{\text {Admin Staff Bldg }}$ (${ }^{\text {a }}$																																								
Reppace Builing Replae evilit Connections	${ }_{30}$								\$	105,957																														
Admin Staff Parking Lot Replace Parking Lot	25																																							
Admin - Subtoal Initial Costs Admin - Subtoal Replacement Costs		\$		\$			\$:	${ }_{\text {\$ }}^{\$}$	105,957 \$:	${ }_{\$}^{\$}$			\$:	\$:	\$		\$ ${ }_{\text {S }}$			${ }_{\text {s }}$			\$		${ }_{\text {s }}$			\$			\$		\$:
Main Entrance																																								
Main Entrance- Roadway	25																																							
Main Entrancee-Scoadways ${ }_{\text {Relebuilding }}$	25																																							
Replace Pads	20															\$	9,800																							
Repalae Builing Replace cales	${ }_{20} 20$																610,921																							
Replace Mechanical Replace Utilly Connections	10 30															${ }_{\text {s }}{ }^{\text {s }}$	577,274 442,918																							
		s		\$:	\$:	\$	- \$		-	\$			\$	1120.913	\$	-	\$		\$		-	\$			\$		\$			\$			\$		\$:
Western Entrance																																								
Western Entrance- Roadways Replace Roadways	25																																							
Western Entrance - scalelBuiling																																								
Replace adas Replace Building	${ }_{50}^{20}$																																							
Replace Scales Replace Mechanical	20 10																																							
Replace Utility Connections	30																																							
Western Entrance - Subtoal Inital Costs Western Entrance - Subtoal Replacement Costs		\$		\$		-	${ }_{\$}^{\$}$:	${ }_{\$}^{\$}$	- ${ }^{\text {s }}$:	${ }_{\$}^{\$}$			\$:	\$:	${ }_{\text {s }}$		\$			${ }_{\text {s }}$			\$		\$			\$			${ }_{\text {s }}$		\$:
Overpass																																								
Reppace Overpass Overass Subtial initl Costs Overpass - Subtoal Replacement Costs		\$		\$:	\$:	${ }_{\$}^{\$}$	- \$:	\$			\$:	\$:	${ }_{\text {s }}$		\$ ${ }_{\text {\$ }}$			\$			\$		\$			\$			\$		\$	\$:
Recovered Materials Storage																																								
Replace Pads Replace Builing	20 50																	\$	155,718																					
Replace Ulitity Connections	30																																							
Recovered Materials Storge -Subtoal Intial Costs Recovered Materials storage-Subtoal Replacement Costs		\$		\$:	${ }_{\$}^{\$}$:	${ }_{\$}^{\$}$	- ${ }^{\text {s }}$:	${ }_{\$}^{\$}$			\$:	\$		\$		\$			\$			\$		\$:	${ }_{\$}^{\$}$			${ }_{\text {s }}^{\text {s }}$		${ }_{\text {s }}$:
Primary Maintenance Facility																																								
Replace Buiding	50																																							
Pepplae Utility Connections							\$	35,796																																
Primary Maintenance - Subtotal Replacement Costs		\$		\$:	\$	35,796		- ${ }^{\text {s }}$:	${ }_{\$}^{\$}$			s	:	\$	-	\$		$\stackrel{\$}{\$}$		-	${ }^{5}$			\$		s			\$			\$		\$	\$	
Satellite Maintenance and Staff FacilitySaielitie Maintenance and Staft-Maintenance Area																																								
Replace Pads Replace suiling	${ }_{50}^{20}$																																							
Replace Pads Replace Building Replace Utility Connections	(50																																							
		\$		\$:	${ }_{\$}^{\$}$:	${ }_{\$}^{\$}$	\$:	${ }_{\$}^{\$}$:	\$		\$:	${ }_{\$}^{\$}$		\$		-	\$			\$		${ }_{\text {\$ }}$			\$			\$		\$	\$:
Stormwater Pond																																								
Replace Stormwater Ponds (liner)	30						\$	112,196	\$	112,196																														
Stormaier Pond - Subtotal Replacement Costs		\$		\$			${ }_{\$}$	112,196	${ }_{\text {s }}$	112,196 \$			\$			${ }_{\text {s }}^{\text {s }}$		\$		\$		${ }_{\$}^{\$}$			${ }_{\$}^{\$}$			\$		${ }_{\$}^{\$}$			\$			\$		\$:

Client: PPWMA Proiect: Renewab
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 Date: Nov-16-2018 Worksheet Intial Capital and Replacement Inputs Plan Concept: 0

Client: propert: Renemabab
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 Date: Nov-16-2018 Worksheet Intial Capital and Replacement Inputs Plan Concept: 0

		$\underbrace{}_{\substack{\text { 2017 } \\ \text { Base Data }}}$	2018		${ }_{-3}^{2019}$		${ }_{\text {2020 }}{ }_{-2}$		${ }^{2021}$			${ }_{2}^{2022}$		2023 1		$\underset{2}{2024}$		${ }_{3}^{2025}$		2026 4			2027 5		2028 6		${ }_{2029}^{7}$		2030 8		$\stackrel{2031}{9}$		2032 10
INITIAL CAPITAL AND REPLACEMENT Costs Replacement Frequency interval (Years)																																	
HHW Builiding (65' $\times 75^{\prime}$)																																	
Replace Pads Replace Buiding Replace Ulility Connections	$\begin{aligned} & 20 \\ & 50 \\ & 30 \end{aligned}$																																
		\$		\$		\$		\$:	${ }_{\$}^{\$}$:	${ }_{\text {s }}$:	\$:	\$		\$			\$:	\$	-	\$		\$		\$		- \$	
Existing Features to be Removed Compost Pond Removal																																	
Compost Pond Removal Compost Pond Removal - Subtotal Initial Costs		\$		\$		\$		\$			${ }_{\text {\$ }}^{\$}$	217,629 217,629	\$		s		s		s			\$		s		\$		s		s		s	
General Elements Special Permits and Allow																																	
Geotechnical Investigation Special Permits and Allow - Subtotal Initial Costs		\$		\$		\$		\$			\$		${ }_{\$}^{\$}$	30,000 30,000	\$		\$		\$			\$		\$	(3, 30,000	\$		\$		s		\$	
Wellands Mitigation																																	
Weilands Mititgation - Subtotal Initial Costs		\$		s		\$		\$			${ }_{\$}^{\$}$	${ }_{9877,453}^{98745}$	S	:	\$		\$		\$			\$		\$		\$		\$		\$		\$	
Site Beautification																																	
Replace Landscaping Replace Fencing	15 40																																
Site Beautififeation - Subtotal Initial Costs		\$		\$		\$				-		-	\$	882,548	\$	3,818	\$					\$	2,864	s		\$							
Site Beautification- Subtoral Replacement Costs		\$		s		\$		\$		-	${ }_{\$}$	-	s	882,48	\$	э,\%ィ	s		\$			\$	2,864	${ }_{\text {s }}$		\$		\$		\$		\$	
Site-wide Demolition																																	
Sit-wide Demolition and Disposal Site-wide Demolition - Subtoal litital Costs		\$		s		\$		\$		-	\$		\$	$\begin{gathered} 2,866,952 \\ 2,866,952 \end{gathered}$	\$	-	\$		\$			\$	-	\$		\$		\$		\$		\$	
Site Utilities																																	
Shared Site Uuilites Site Ulitites - Subtoal litital Costs		\$		s		\$		\$		-	\$		\$		\$		\$		\$			\$		\$		\$		\$		\$		\$	$3,061,096$
MRF Upgrade to Ts																																	
MRF Uporrade Replace Pads TS																																	
	${ }_{20}^{20}$																																
MRF Upgrade to TS- - uubtoal litial Costs		$\$_{\$}^{\$}$		\$		\$		${ }_{\$}^{\$}$:	${ }_{\$}^{\$}$:	${ }_{\$}^{\text {s }}$:	${ }_{\$}^{\$}$:	${ }_{\$}^{\$}$		${ }_{\text {s }}$:	\$	-	\$:	${ }_{\$}^{\$}$		${ }_{\text {s }}$		\$		\$:

Client: propert: Renemabab
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 Date: :Nov-16-2018 Workshoet. .nitial Capital and Replacement Inputs Plan Concept: :

Client: propert: Renemabab
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 Date: :Nov-16-2018 Workshoet. .nitial Capital and Replacement Inputs Plan Concept: :

Client: WPWMA Project: Renewab
 Project: Renewable Placer - Waste Action Plan Date: Nove-16-2013
 Date: :Nov-16-2018 Workshet. - intital Capital and Replacement Inputs Plan Concept: 0

Client: propert: Renemabab
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 Date: Nov-16-2018 Workshoet. .nitial Capital and Replacement Inputs Plan Concept: :

Client: WPWMA Project: Renewab
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 Date: :Nov-16-2018 Workshoet. .nitial Capital and Replacement Inputs Plan Concept: :

			${ }_{75}^{2097}$			2098 76		${ }_{77}^{2099}$			2100 78			${ }_{29}^{2101}$			2102 80			${ }_{81}^{2103}$		${ }_{82}^{2104}$			${ }_{83}^{2105}$			${ }_{84}^{2106}$		${ }_{2107}^{85}$		${ }_{86}^{2108}$			${ }_{87}^{2109}$		$\underbrace{\text { Life }}_{\substack{\text { Remaining } \\ \text { Useful Life }}}$
IIITIAL CAPITAL AND REPLACEMENT COSTS																																					
Non-Critical Elements																																					
HHW Builiding (65' ${ }^{\text {Repla }}$																																					
Replace Pass Repolae usiling Replace Uutily Connections	20 50 30																																				
Main Site HHW Facility - Subtoal Initial Costs					\$	-	\$		\$			-	\$		-	\$			\$					\$					\$		\$		-	\$		\$	
Main Site HHW Facility - Subtoal Replacement Costs					\$	-																															
Existing Features to be Removed Compost Pond Removal Compost Pond Remova																																					
General Elements Special Permits and Allow																																					
Geotechnical Investigation Special Permits and Alow - Subtoal litital Costs					\$	-	\$		\$	s			\$			\$			\$		\$			\$			s		\$		s		-	\$		s	-
Wetlands Mitigation																																					
Wellands Mititation					\$		\$			\$			\$			\$			\$		\$			\$			\$		\$		\$			\$			
Wetands Mitigation - Subtotal Initial Costs					s	-	\$			s			\$			\$			s		s			\$			\$		\$		\$			\$		\$	-
Site Beautification																																					
Facility Reautification																																					
Replace Landscaping Replace Fencing	15 40				\$	263,120																														\$	(70,165.40)
		s			\$	263,120	\$		\$	\$			${ }_{\$}^{\$}$:	\$			${ }_{\$}^{\$}$		${ }_{\$}^{\$}$			${ }_{\text {\$ }}^{\$}$		\$	${ }_{\$}^{\$}$		${ }_{\$}^{\$}$		${ }_{\text {s }}$		-	${ }_{\$}^{\$}$		\$	(70,165)
Site-wide Demolition																																					
Site-wide Demolition - Subtotal Intial Costs					\$		\$			\$			\$			\$			\$		\$			\$			s		\$		\$		-	\$		\$	
Site Utilites																																					
Shared Site Uilities ${ }_{\text {S }}^{\text {Site Ulilies - Subtoal litital Costs }}$					\$	-	\$			s		-	\$			\$			\$		\$			s			\$		\$		\$			\$		\$	
MRF Upgrade to TS																																					
MRF Upgrade to TS																																					
Replace Pads Replace Scales	${ }_{20}^{20}$																																			\$	${ }^{(3,394.01)}$
MRF Uppraceide to TS - Subtotal Initial Costs																																				\$	(38,182.56)
MRF Upgrade to TS - Subtotal Replacement Costs					\$	-	$\stackrel{\$}{5}$		\$				\$:	\$			\$		\$			s					\$		\$			s		\$	$(41,577)$

Appendix 4A-3
 Capital Cost Outlay
 Plan Concept 1

Client: PPWMA Proiect: Renewab
 Proiect: Renewable Placer - Waste Action Plan Date:
 Date: Nov-16-2018 Workseet Intial Plan Concept: 1

Client: PPWMA Proiect: Renewab
 Proiect: Renewable Placer - Waste Action Plan Date:
 Date: Nov-16-2018 Worksheet Intial Capital and Replacement Inputs Plan Concept: 1

Client: WPWMA Proiect: Renewat
 Proiect: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 Date: Nov-16-2018 Workseet Intial Plan Concept: 1

Client: WPWMA Proiect: Renewab
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 | Date: :Nov-16-2018 |
| :--- |
| $\begin{array}{c}\text { Workshoet. } \\ \text { Plan Conitial Capital and Replacement Inputs }\end{array}$ |

client: WPWMA proiect Renewab
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018

Client: wpwna Proioct Renewab
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 $\underset{\substack{\text { Worksheet: Initial Capital and Replacement Inputs } \\ \text { Plan Concept: } 1}}{1}$

Client: WpwnA Project Renewab
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 Date: Nov-16-2018 Worksheet Intial Capital and Replacement Inputs Plan Concept: 1

 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 Date: :Nov-16-2018 $\substack{\text { Workshoet. } \\ \text { Plitan Concept: } 1}$ Capital and Replacement Inputs

Client: propert: Renemabab
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 Date: :Nov-16-2018 $\begin{gathered}\text { Workshoet. } \\ \text { Plan Contital Cept: } 1\end{gathered}$ Capital and Replacement Inputs

Client: propert: Renemabab
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018

Client: propert: Renemabab
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 Date: :Nov-16-2018 $\substack{\text { Workshoet. } \\ \text { Plan Contial Concept } 1}$

Appendix 4A-3
 Capital Cost Outlay Plan Concept 2

			$\begin{gathered} 2033 \\ \hline 11 \\ \hline \end{gathered}$		$\begin{gathered} 2034 \\ 12 \end{gathered}$		$\begin{aligned} & 2035 \\ & 13 \end{aligned}$		$\begin{gathered} 2036 \\ 14 \end{gathered}$		$\begin{gathered} 2037 \\ 15 \end{gathered}$			$\begin{gathered} 2038 \\ 16 \\ \hline \end{gathered}$	$\begin{gathered} 2039 \\ 17 \end{gathered}$		$\begin{gathered} 2040 \\ 18 \end{gathered}$		${ }_{19}^{2041}$		$\begin{aligned} & 2042 \\ & 20 \end{aligned}$		$\begin{gathered} 2043 \\ 21 \end{gathered}$	2044 22		${ }_{23}^{2045}$		2046 24		2047 25		2048 26
INITAL CAPITAL AND REPLACEMENT COSTS																																
Critical Elements Replacement Frequency Interval (Year: Public Area																																
Public Area Public Area - Roadways																																
Replace Roadways Public Area - Buyback 220	25																														\$	1,799,189
Replace Pads	20																					\$	786,391									
Replace Builiding Replace Uutily Connections	50																															
	${ }_{30}^{50}$																															
Pubica frea - Reuse Store Area (155' $\times 140^{\circ}$)																																
Replace Pads	20																					\$	342,244									
Replace Builing ${ }^{\text {R }}$	${ }_{30}^{50}$																															
Replace Utility Connections Public Area - Tipping Area	30																															
Replace Pads Replace Tioping Builing	20																					\$	2,116,291									
Public Area - Subtotal Initial Costs Public Area - Subtotal Replacement Costs		s	:	${ }_{\$}^{\$}$		${ }_{\text {S }}^{\text {s }}$		${ }_{\$}^{\$}$		\$			\$	${ }_{\text {s }}^{\$}$		${ }_{\text {s }}$		${ }_{\$}^{\$}$		${ }_{\text {s }}$		${ }_{\$}^{\$}$	3,833,052 \$		${ }_{\$}^{\$}$		${ }_{\$}^{\$}$		${ }_{\$}^{\$}$		${ }_{\$}^{\$}$	1,799,189
${ }^{\text {C8D }}$ C\&D-C8D Pad																																
Replace Pads	${ }_{50}^{20}$																								\$	7,884,855						
C8D Propeessing Line																																
Replace Utility Connections C\&D - Subtotal Initial Costs						\$	7,636,512																		\$	7,636,512						
			-			s																										
C\&D - Subtotal Initial Costs C\&D - Subtotal Replacement Costs				\$		s	7,636,512	s		s			\$	${ }_{\text {s }}$		\$		\$		\$		\$	S		\$	15,521,367	\$		\$		\$	
Composting																																
Compost - Green Waste Pad ($210^{\prime} \times 2255^{\prime}$)Replace PassCompost - Wood Waste Pad ($115^{\prime} \times 2255^{\prime}$)			351,136											351,136																	\$	702273
	20		192,289											192,289																	s	
Replace Pads Compost - Outcoor Receiving Area (90' $\times 200{ }^{\prime}$)	20		116,835											116,835																	\$	384,578
Replace PadsReplace Specialy Equipment	${ }_{10}^{20}$		116,835											116,835																	\$	226.510
	10 30													1,995,039																	\$	1,995,039
			1,076,230											1,076,230																		
Replace Pads Replace Specialty Equipment	20 10													1,627,532																	\$	${ }_{\substack{2 \\ 1,627,532}}^{2,868}$
	30																															
	Compost- Temporary Positive ASP System Compost Active Composting System (205' ${ }^{\text {880 }}$ 880)		3,702,906											3,702,906																		
Compost - Active Composting System (205' ${ }^{\text {R }}$ R 8800°) Replace Pads																																2,686,872
Replace Pads Replace ASPs (concrete replacement schedule) ${ }^{\text {a }}$ (${ }_{20}^{20} 0$	20 10													645,371								\$	322,685								\$	${ }^{4,665,246} 32,685$
	Replate													1280,656								\leqslant										
			1,280,656											1,280,656																		
	20																														s	788,438
Compost - Asp Curing System (1855' $\times 880^{\prime}$) ${ }^{\text {Remede }}$			1,835,630											1,835,630																		
Replace Pads Replace AsPs (concrete erplacement schedule)	20 20 10																														\$	${ }_{3}^{2,617,566}$
Replace Mechanical	10 30													448,509								\$	224,255									
Compost- Dedicated Stormwater Ponds																																
(emplace Storwwater Ponds (liner)	${ }^{3}$																															
Replace Mechanical Compost - Subtotal Initial Costs Compost - Subtotal Replacement Costs																					12,409											
			${ }^{8,55,682}$	\$		${ }_{\$}^{\$}$	-	${ }_{\text {s }}^{\text {s }}$		\$		-	\$	${ }_{\text {8,716,450 }}^{8.55682}$ \$		\$		\$		\$	12,409	+	546,940 \$		\$	\div	\$		${ }_{\$}^{\$}$		s	23,507,272
Landilil Landifil Construction																				\$	36,419,538											
Stockpie Relocation			15,214,206																			\$	15,214,206									
			15,214,206	\$		\$		\$		\$			\$	s		\$		\$		\$	36,419,538	\$	15,214,206		\$		\$		\$		\$	

Client: WPWMA
Project: Renewab
Proiect: Renewable Placer - Waste Action Plan
Date:
Date: Nov-16-2018
Workseet Intial
Plan Concept: 2

			$\begin{array}{r} 2049 \\ 27 \\ \hline \end{array}$		2050 28		2051 29		$\begin{aligned} & 2052 \\ & 30 \\ & 30 \end{aligned}$		${ }_{31}^{2053}$	2054 32		$\begin{gathered} 2055 \\ \hline 33 \\ \hline \end{gathered}$		$\begin{aligned} & 2056 \\ & 3 \\ & \hline \end{aligned}$		2057 35		$\begin{aligned} & 2058 \\ & 36 \\ & \hline \end{aligned}$		$\begin{aligned} & 2059 \\ & \\ & \hline 37 \end{aligned}$		2060 38		2061 39		2062 40		${ }^{2063}$	2064 42	
INITAL CAPITAL AND REPLACEMENT COSTS																																
Critical Elements Public Area																																
Public Area - Roadways																																
Replace Pads	20 50 50																												\$	786,391		
${ }_{\text {Replace Uutily }}^{\text {Reornections }}$	50 30									\$	59,249																					
Public Area - $\mathrm{HHW}\left(300^{\circ} \times 100^{\circ}\right.$)																																
Replace Pads Replace Builing	20 50																												\$	588,126		
Replace Utilit Connections ${ }^{\text {R }}$	30									\$	143,185																					
Public Area - Reuse Store Area ($155^{\prime} \times 140^{\prime}$) Replace Pads	${ }^{20}$																												\$	342,244		
	50 30									\$	37,771																					
Public Area - Tipping Area																																
Replace Pads	${ }^{20}$																												\$	2,116,291		
	50 50 30																															
Pubic Area - Subtotal Initial Costs				\$		\$		s		\$	\%		\$	-	\$		\$		s	-	\$		\$		\$		\$	-	\$	- \$		
Public Area - Subtotal Replacement Costs				s		\$		s			381,908 \$		\$	-	s		\$		\$	-	\$						\$	-	\$	3,833,052 \$		
C8D																																
C8D - CzD Pad Replace Pads																																
Replace Pads Replace Overhang Structure	20 50																															
C\&D - Processing Line Replace Processing Equipment	10																															
Replace Utilits Connections Ref	30												\$	${ }_{\text {286,369 }}$																		
C8D- Subtoal intial osts				\$		\$		s	:	${ }_{\$}^{\$}$	- ${ }_{\text {s }}$		${ }_{5}^{\text {s }}$	7,922,881	${ }_{\text {s }}$		${ }_{\text {s }}^{\text {s }}$		\$:	${ }_{\$}^{\$}$		\$		\$		\$:	\$	- \$		
Composting																																
Compost-Green Waste Pad ($\left.210^{\prime} \times 225^{\prime}\right)$ Replace Pads	20									\$	351,136								s	351,136												
Compostl- Wood Waste Pad (115' ${ }^{\text {225 }}$)																			s													
Compost Outdoor Receiving Area (90' ${ }^{\text {Rel }}$ 200')	20									\$	192,289								s	192,289												
Replace Pads ${ }_{\text {Replace Ste }}$	20 10									\$	113,255								\$	113,255 $1,995,039$												
Rel	30																		s	${ }_{\text {, }}^{7,159}$									s	3,580		
Compost - Screening and Product Storage Pad (400' $\times 350^{\prime}$) Replace Pads	20									\$	1,040,434								s													
Reploace Specialy Equipment Replace Uvility Connecions	10 30																		\$	$\begin{aligned} & 1,647,4342 \\ & \hline 11,592 \end{aligned}$									\$	35,796		
Compost - Temporary Positive ASP SystemCompost Active Composing system (205' 880')																																
Replace ASPs (concrete replacement schedul) Replace Mechanical	20 10									\$	2,332,623								\$	${ }_{\text {2, }}^{2,332,623} \mathbf{6 4 , 3 7 1}$												
Replace Utility Connections	30																		\$	${ }^{6} 53,694$									\$	${ }_{\text {26, }}^{2247}$		
Compost - Biofitere ($\left(135^{\prime} \times 880^{\prime}\right)$ Replace Pads	20																															
Replace Biofiters (concrete replacement schedule)	${ }_{20}^{20}$									\$	${ }_{394,219}$								\$	${ }_{394,219}$												
Compost - ASP Curin System ($\left(1855^{\prime} \times 880^{\prime}\right.$) Replace Pads	20																															
Replace ASPs (concrete replacement schedule)	${ }^{20}$									\$	1,808,783								\$	1,888,783												
Replace Mechanical	10 30																		\$	448,599 53,694									\$	224,255 26,847		
Compost - Dediciated Stormwater Ponds Replace Stormwater Ponds (iner)	30							s	557,924																							
(eomost - - Miscellaneous Equipment	${ }^{3}$							s																								
Replace Mechanical Compost - Subtoal Iitial	10							\$																			\$					
Compost- Stubotal inital Cosis Compost - Subtalal eeplacement Costs				\$		\$		\$	$570 \cdot \stackrel{\square 33}{ }$	\$	9,668,881 ${ }_{\text {s }}^{\text {s }}$		\$:	\$		\$		\$	14,571,471	\$		s				\$	12,409	\$	640,010 \$		
Landilil																																
Landifil Construction Unined Area ExavationBackill								\$	36,419,538																		\$	36,419,538				
Stor																																
				\$		\$		\$	36,419,538	\$			\$		\$		\$		s		\$		s				\$	36,419,538	\$	15,214,206		

Client: wpwne
Project Renewab

Client: WPWMA Proiect: Renewat
 Proiect: Renewable Placer - Waste Action Plan Date:
 Date: Nov-16-2018 Workseet Intial Plan Concept: 2

Client: PPWMA Proiect: Renewab
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 Date: Nov-16-2018 Werksheet Intial Capital and Replacement Inputs Plan Concept: 2

Client: PPWMA Proiect: Renewab
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 Date: :Nov-16-2018 Workshoet. .initial Capital and Replacement Inputs Plan Concept: 2

Client: PPWMA Proiect: Renewab
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 Worksheet: Initial Capital and Replacement Inputs Plan Concept: 2

Client: WPWMA Proiect: Renewab
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 Date: :Nov-16-2018 Workshet. - intital Capital and Replacement Inputs Plan Concept: 2

Client: wpwnA Proiet Renematu
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 Worksheet: Initial Capital and Replacement Inputs Plan Concept: 2

			2081 59		2082 60			${ }_{2}^{2083}$		2084 62		${ }_{2}^{2085}$			2086 64			2087 65		2088 66		2089 67		2090 68		${ }_{69}^{2091}$			2092 70		2093 71			2094 72			${ }_{73}{ }^{295}$		2096 74	
INITIAL CAPITAL AND REPLACEMENT COSTS																																								
Replace Builiding Replace Uutity Connections	50 30								\$	105,957																														
Admin Staff Parking Lot																																								
		\$		${ }_{\text {s }}$			\$:	${ }_{\$}^{\$}$	105,957	\$			\$			\$.	${ }_{\text {s }}$:	${ }_{\text {s }}$	-	${ }_{\text {s }}^{\$}$		\$			${ }_{\$}^{\$}$		\$:	${ }_{\$}^{\$}$		\$:	${ }_{\$}^{\$}$		-
Main Entrance																																								
Replace Pads	20	Meeplace Roadways ${ }_{\text {Rain Entrance-Scale/suilding }}$																																						
Replace Builing Replace Scales																																								
(ental	20 10 30																\$	510,921 442.274 4.918																						
		\$		\$:	\$	-	\$		\$:	\$			\$		s	:	s	-	\$		\$		-	\$		\$:	\$		\$:	${ }_{\text {s }}$:
Main Entrance - Subtotal Replacement Costs				\$			\$		\$		\$.	\$				1,120,913		-	s		\$		\$			\$		\$		-	\$				-	s		
Western Entrance																																								
Western EntranceWestern Erance- RoadwaysReplace Roadwas																																								
Westepmatee Rearacways																																								
	20 50																\$	9,800																						
Repliace Scales	20 10 10																\$	210,004 57274																						
Reppace Mectanical	10 30																																							
Western Entrance- - Subtotal Sitial Costs Western Entrance - Subtoal Replacement Costs		\$		${ }_{\$}^{\$}$:	\$:	${ }_{\$}^{\$}$	-	${ }_{\text {s }}^{\$}$:	\$			\$	277,078	$\stackrel{\text { \$ }}{\$}$:	${ }_{\$}^{\$}$	-	${ }_{\$}^{\$}$		${ }_{\$}^{\$}$.	${ }_{\$}^{\$}$		\$:	${ }_{\$}^{\$}$		\$:	${ }_{\$}^{\$}$:
Overpass																																								
Replace Overpass (paving Overpass - -ubtotal Intial Costs	25	\$		\$									-	\$			\$		s	-	s		\$							\$		-	\$				-	\$		-
Overpass - Subtotal Replacement Costs		s		\$			s	-	\$		s			\$			s		s	.	s		\$		s			\$		s		-	\$		s		-	s		-
Recovered Materials Storage																																								
$\underset{\text { Recyclables Storage Builing }}{\text { Replace Pads }}$	20																		s	155,718																				
Reppace Builing	${ }_{50}$																																							
Replace Utility Connections Recovered Materials Storage-Subtotal Intital Costs	30																		\$	143,185																				
Recovered Materials Storge - Subtotal Intial Costs Recovered Materials torage - Subtoal Replacement Costs		\$		\$:	\$	\div	${ }_{\$}^{\$}$	\therefore	\$			${ }_{\$}^{\$}$:	\$:	\$	298,903	\$	-	\$		\$			\$		\$		-	\$		\$		-	\$:
Primary Maintenance Facility																																								
Replace Pads Replice builing	(20 ${ }_{50}$																																							
Repolace Utility Connections	30																																							
Primary Maintenance - Subotal Initial Costs Primary Maintenance - Subtotal Replacement Costs		\$		\$			\$	35,796	$\stackrel{\$}{\$}$		\$			\$			\$		\$		${ }_{\text {\$ }}^{\$}$	-	${ }_{\$}^{\$}$		\$			\$		\$:	\$		\$			${ }_{\$}^{\$}$:
Satellite Maintenance and Staff Facility Satellite Maintenance and Staff - Maintenance Area																																								
Replace Pads Replace Building \qquad	20 50 30																				\$	1,115,869																		
Reeplace Utitit Connections ${ }_{\text {Satelite Maintenance and Staft }}$ Staff Bldg and Parking Area ${ }^{30}$																																								
Replace Pads 20 Replace Building 50 Replace Utility Connections 30																																								
		\$		${ }_{\$}^{\$}$:	\$	-	\$	-	\$:	\$			${ }_{\text {s }}^{\text {s }}$:	\$:	${ }_{\$}^{\$}$	1.115.869	\$		\$:	${ }_{\$}^{\$}$		${ }_{\text {s }}$:	${ }_{\text {\$ }}^{\$}$		${ }_{\text {s }}^{\$}$:	${ }_{\$}^{\$}$:
Stormwater Pond																																								
Replace Stormwater Ponds (liner)	30			s			\$	1,197,329	\$	1,197,329	s			\$			\$	-	\$	-	\$	-	\$		s			\$		\$		-	\$		\$			\$		-
Stormwater Pond - Subtotal Replacement Costs				s				1,197,329		1,197,329				\$			\$		s		\$		\$		s			s		\$		-	s		\$					

Client: PPWMA Proiect: Renewab
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 Worksheet: Initial Capital and Replacement Inputs Plan Concept: 2

			2097 75	2098 76			2099 77		2100 78			2101 79			2102 80		2103 81		2104 82		2105 83			2106 84		2107 85		2108 86		2109 87		(emaining
INITIAL CAPITAL AND REPLACEMENT COSTS																																
Necessary Supporting Elements $\begin{aligned} & \text { Admin }\end{aligned}$																																
Replace Eutiding ${ }^{\text {Replae Uutily Conections }}$	${ }_{30}$																														s	$\underset{\substack{(4,616,272) \\(17,699)}}{(0,59)}$
Admin Staff Parking Lot Replace Parking Lot	25						172,583																									(103,550)
Admin - Subtotal Initial Costs		\$				s	172	\$			\$			\$						\$		-	\$				\$				\$	
Admin - Subtotal Replacement Costs		\$				\$	172,583	\$			\$			\$		\$				\$		-	\$		- \$		s	-	\$		\$	(4,737,481)
Main Entrance																																
Main Entrance - Roadways																																
	25													\$	802,788																\$	(578,008)
	${ }^{20}$																								\$	9,800					s	(8,820)
Replace Builing	${ }_{50}^{50}$																														\$	
Replace Scales Replace Mechanical	20 10	s	57,274																						\$	610,921 57,274					${ }_{\text {\$ }}$	$(549,889)$ $(45,819)$
Replace Utility Connections	30																														\$	(118,111)
Main Entrance - Subtotal Intial Costs ${ }_{\text {a }}^{\text {Main Entance - Subtoal Replacement Costs }}$		\$	57,274 ${ }_{\text {¢ }}^{\text {S }}$:	\$		\$		-	\$			\$	802,788	${ }_{\text {\$ }}$				\$:	\$		\$	677,995	s	:	\$			$(1,317,082)$
Western Entrance																																
Western Entrance- - Roadways Replace Roadways	25	s	775,106																													
Western Entrance - Scale/Builing																																
Replace Pads Replace Builing	20 50																								\$	9,800					s	(8,820)
Replace Scales	${ }^{20}$																									210,004					\$	(189,004)
Replace Mechanical Replace Utilit Connections	10 30	s	57,274																						\$	57,274 83,047					\$	$(45,819)$ $(77,511)$
Western Entrance - Subtotal Litial Costs Western Entrance- Sutotal Replacement		\$	832.380 \$:	${ }_{\text {\$ }}$		\$:	\$:	\$	-	\$		\therefore \$		\$:	${ }_{\text {s }}$		- \$	360,125	s	:	\$		\$	
Overpass $\begin{gathered}\text { Overpass } \\ \text { Ofer }\end{gathered}$																																
	25	\$	213,822		-	\$	-	\$		-	\$		-	\$		\$		\$		\$:	s		\$		\$	-	\$		\$	(111,188)
Overpass - Subtotal Replacement Costs																																
Recovered Materials Storage																																
Recyclables Storage Builing Replace Pads																																
Replace Pads Replace Buiding	20 50																										\$	155,718			\$	${ }_{(3,033,475)}^{(147,932)}$
Replace Ulility Connections Recovered Materials Storage - Subtal Initial Costs	30																														\$	(42,955)
Recovered Materials Storage - Subtotal Initial Costs Recovered Materials Storage - Subtotal Replacement Costs		\$	\$:	\$		\$			\$			\$		${ }_{\8		\therefore - ${ }^{8}$		\$:	\$		- \$		\$	155,718	${ }_{\$}^{\$}$		\$	$(3,224,362)$
Primary Maintenance FacilityPrimary Maintenance - Maintenance Area (250' ${ }^{\prime}$ 300')																																
Replace Pads	($\begin{gathered}20 \\ 50\end{gathered}$																															
Replace Uutily Connections	30																														\$	(4,773)
Primary Maintenance - Subtotal Intial Costs Primary Maintenance - Subtotal Replacement Costs		\$: ${ }^{\$}$:	\$:	\$			${ }_{\$}^{\$}$:	\$:	${ }_{\$}^{\$}$		$\therefore{ }^{\$}$		${ }_{\$}^{\$}$:	${ }_{\text {s }}$		\$	-	\$:	\$	-	\$	(470, 569)
Satellite Maintenance and Staff FacilitySatelite Maintenance and Staft-Maintenance Area																																
Replace Pads Replace suiling	($\begin{gathered}20 \\ 50\end{gathered}$					\$	1,192,618																						\$		${ }_{\$}^{\$}$	${ }_{(19,154,8,094)}^{(1,1)}$
Replace Uuiling						s	1,192,618																						\$	71,592	\$	$\underset{(71,592)}{(954,094)}$
	20 50 30																															
Satelite Maintenance and Staff- Subtotal Initial Costs								s																								
Satellite Maintenance and Staff - Subtotal Replacement Costs		s	- \$		-	s	1,192,618	s			s		-	s		s		\$		${ }_{\text {s }}$		-	${ }_{\$}$		- ${ }_{\text {s }}$:	s	:	\$	1,187,461	s	$(2,141,555)$
Stormwater Pond ${ }_{\text {New Stornwater Ponds }}$																																
${ }_{\text {New Stormwater Ponds }}^{\text {Replace Stormwater Ponds (liner) }}$	30																															
Stormwater Pond- Subtotal Intitial Costs		\$				\$		s						\$						\$		-	s		\$	-	s	-	\$		s	(35, 199)
Stormwater Pond - Subtoal Replacement Costs			\$		-	\$		\$						\$		\$				\$		-	\$		- \$		\$	-	\$			(359,199)

Client: propert: Renemabab
 Project: Renewable Placer - Waste Action Plan Date:
 Date: Nov-16-2018 Worksheet Intial Capital and Replacement Inputs Plan Concept: 2

 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 Date: :Nov-16-2018 $\begin{gathered}\text { Workshoet. } \\ \text { Plan Contital Cept: } 2\end{gathered}$ Capital and Replacement Inputs

Client: propert: Renemabab
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 Date: Nov-16-2018 Worksheet Intial Capital and Replacement Inputs Plan Concept: 2

Client: propert: Renemabab
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018

Client: propert: Renemabab
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 Date: Nov-16-2018 Worksheet Intial Capital and Replacement Inputs Plan Concept: 2

Client: propert: Renemabab
 Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
 Date: Nov-16-2018 $\begin{gathered}\text { Workshoet. } \\ \text { Plan Coitial Concept: } 2\end{gathered}$ Capital and Replacement Inputs

			2097 75		2098 76		2099 77		2100 78			2101 79		2102 80			${ }_{81}^{2103}$		${ }_{82}^{2104}$		2105 83			2106 84		2107 85			2108 86		2109 87		Remaining
INITIAL CAPITAL AND REPLACEMENT COSTS																																	
Non-Critical Elements Main Site HHW Facility HHW Building (65' x 75')	yuenc																																
Replace Buildin Replace Utility C Main Site Costs	$\begin{aligned} & 20 \\ & 50 \\ & 30 \end{aligned}$	s		\$		\$		${ }_{\$}^{\$}$:	${ }_{\$}^{\$}$		${ }_{\text {\$ }}^{\text {\$ }}$			${ }_{\text {s }}$:	\$		\$			${ }_{\text {\$ }}$		\$:	\$		\$:
Existing Features to be Removed Compost Pond Removal Compost Pond Remova Compost Pond Removal - Subtotal Initial Costs		s		\$		\$		\$			\$		\$			\$		\$		\$			\$		\$			s	-	\$		\$	
Special Permits and Allow Special Permits Geotechnical Investigation Special Permits and Allow - Subtotal Initial Costs		s		\$		s		\$			\$		\$			s		\$		\$			s		\$			s	-	\$		\$	
Wetlands Mitigation Wetlands Mitigation Wetlands Mitigation - Subtotal Initial Costs		s		\$		\$		\$			\$		\$			\$		$\begin{aligned} & \$ \\ & \$ \end{aligned}$		\$			\$		\$:	\$		\$	
Site Beautification Facility Beautification Replace Landscaping Replace Fencing Site Beautification - Subtotal Initial Costs Site Beautification - Subtotal Replacement Costs	15 40			$\$$ $\$$ $\$$	548,959 548,959	\$		\$:	\$		\$			\$	$\begin{aligned} & 1,297,252 \\ & 1,297,252 \end{aligned}$	\$		${ }_{\text {\$ }}^{\text {\$ }}$			\$		\$			\$:	\$		\$	
Site-wide Demolition Site-wide Demolition and Disposal Site-wide Demolition - Subtotal Initial Costs				\$		\$		\$		-	\$		\$		-	\$		\$		\$		-	\$		\$			\$	-	\$		s	
Site Utilities Shared Site Utilities Site Utilities - Subtotal Initial Costs				\$	-	\$		\$		-	\$		\$		-	\$	-	\$		\$		-	\$		\$				-	\$		\$	-
MRF Upgrade to TS MRF Upgrade to TS Replace Pads Replace Scales MRF Upgrade to TS - Subtotal Initial Costs MRF Upgrade to TS - Subtotal Replacement Costs	$\begin{aligned} & 20 \\ & 20 \\ & 20 \end{aligned}$			\$		\$		\$			\$		\$:	\$		\$		\$			\$		\$			\$	33,940 381,826 415,766	\$		\$	$\begin{aligned} & (33,243) \\ & (362,73) \\ & (394,977) \end{aligned}$

Appendix 4B
Operational Cost Basis

Appendix 4B. Operational Cost Basis

This appendix contains the basis for operational costs developed for the Plan Concepts. The Operations and Maintenance (O\&M) cost for each Plan Concept was based on the following overarching assumptions:

- The existing O\&M costs for the Western Placer Waste Management Authority (WPWMA) facility provide a reasonable basis for projecting O\&M cost changes.
- The existing O\&M cost structure can be used to project O\&M costs for each Plan Concept, meaning the relative public/private operating cost components and breakdown.
- General assumptions about the anticipated increase in operating cost attributable to implementing the different Plan Concepts can be based overall on percent change, as backed up, with the exception of long-haul trucking and post-closure care.
- The model for long-haul trucking of waste for remote disposal assumes that this is performed by a private entity under contract, and that all waste transport and disposal is included as an O\&M cost and is not part of the capital cost.
- Post-closure care costs can be obtained and developed from a combination of the current landfill O\&M costs and the facility's existing post-closure cost estimate.

The primary basis of operational costs was derived from WPWMA's operational costs for the facility in year 2017, provided in "preliminary budget 18-19.xlsm." WPWMA staff worked with the CH2M Team to identify the applicable costs to include in the overall O\&M cost estimate. The WPWMA operating cost data extracted from this spreadsheet were then prorated into the related operating components, and operating costs per ton were developed for 2017 as a "base year." These per-ton operating costs were back-checked with the tonnage to confirm that the applicable costs were reflected in the unit rates. The CH2M Team then reviewed the unit costs with WPWMA staff and the operator to gather input on whether these rates appeared to be applicable and what increases to these unit costs might be necessary to reflect operating condition changes outside of the master planning project. Using this input, the CH2M Team made adjustments to the base year unit costs, and incorporated other increases for the near planning term. Using this method, the following unit operating costs were developed for each of the following categories:

- Landfill operations (per ton)
- Public Area operations (per ton)
- C\&D Area operations (per ton)
- Compost Area operations (per ton)
- WPWMA administrative operations (per ton)

For each of these O\&M cost categories, unit costs were multiplied by waste stream projections to calculate future operational costs. Note that for the Public Area, C\&D Area, and Compost Area, the unit cost was developed by extracting the tonnages allocated from these areas and the relative portion of the fees paid to the facility operator in 2017 for either the landfill or material recovery facility (MRF), as applicable, and as indicated in the waste stream flow contained in "preliminary budget 18-19.xlsm."

O\&M costs for two additional components were developed with approaches specific to the cost type and as described in the following sections of this appendix:

- Offsite disposal and long-haul trucking operations (per ton, after closure of the landfill)
- Post-closure care operations (per acre)

In general, the offsite disposal and long-haul trucking O\&M cost is a function of assumptions for haul distance, receiving site tip fee, and trucking fleet cost allocation. Post-closure cost is a function of the acres in post-closure at a given time, duration of post-closure within the analysis period, and the unit cost for post-closure.

The offsite disposal and long-haul trucking unit costs were multiplied by waste stream projections to calculate future operational costs for the years in which long-haul trucking and offsite disposal occurred for each Plan Concept. For post-closure care operations, the unit cost was applied to the total acres in post-closure in the year after the site reached capacity under each Plan Concept, and continued for a period of 30 years. Partial phased closure was considered as further described in this appendix.

For all of the O\&M cost categories listed above, other adjustment factors were applied based on anticipated conditions as described in the following sections along with detail on the methodology to derive applicable operational costs.

Detailed operational costs for each Plan Concept are provided in Appendix 4B-1.

4B. 1 Landfill Operations

The landfill base year unit operating cost was calculated by dividing the total landfill operational expenses by the total disposed tonnage as listed in the WPWMA spreadsheet "preliminary budget 18-19.xIsm." Total buried tonnage was taken from the "Landfill O\&M" sheet in the "preliminary budget 18-19.xlsm" spreadsheet and the costs from the "LF Operational Expenses" spreadsheet. That base cost was then adjusted by the factors listed in Table 4B-1 for the applicable Plan Concepts.

Table 4B-1. Landfill Operations Adjustment Factors

| Plan
 Concept | | Year | Adjustment
 Factor | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 1 | 2 | All Rationale | |

4B. 2 Public Area Operations

Because of the way the WPWMA currently pays for operating services at the facility, the public area base year unit operating cost was calculated using the same approach as the Compost and C\&D Areas. Nonlandfill operating costs are currently paid in one combined MRF operating fee by the WPWMA. Thus, calculating the base year unit operating cost for the non-landfill components consisted of a weighted average of the calculated per ton fee for landfill and MRF operating costs using the associated amount of waste that ultimately goes to the MRF and the landfill after it is received in the Public, Compost, and C\&D Areas. The data for these calculations were obtained from the "Tonnages \& Tip Fees" sheet and the "MRF Operating Expenses" sheet in the WPWMA spreadsheet "preliminary budget 18-19.xlsm" and from differences between Plan Concepts. The base cost was then adjusted by the factors listed in Table 4B-2 for the applicable Plan Concepts.

Table 4B-2. Public Area Operations Adjustment Factors

Plan Concept	Year	Adjustment Factor				
0	1	2	All	$+2.12 \%$		Forecasted tonnage increase year over year to reflect increased tonnage from
:---						
population growth.						

4B. 3 C\&D Area Operations

Because of the way the WPWMA currently pays for operating services at the facility, the C\&D Area base year unit operating cost was calculated using the same approach as the Public and Compost Areas. Nonlandfill operating costs are currently paid in one combined MRF operating fee by the WPWMA. Thus, calculating the base year unit operating cost for the non-landfill components consisted of a weighted average of the calculated per-ton fee for landfill and MRF operating costs using the associated amount of waste that ultimately goes to the MRF and the landfill after it is received in the Public, Compost, and C\&D Areas. The data for these calculations were obtained from the "Tonnages \& Tip Fees" sheet and the "MRF Operating Expenses" sheet in the WPWMA spreadsheet "preliminary budget 18-19.xlsm" and from differences between Plan Concepts. The base cost was then adjusted by the factors listed in Table 4B-3 for the applicable Plan Concepts.

Table 4B-3. C\&D Area Operations Adjustment Factors

Plan Concept		Year	Adjustment Factor	Rationale		
0	1	2	All	$+2.12 \%$		Forecasted tonnage increase year over year to reflect increased tonnage from
:---						
population growth.						

${ }^{\text {a }}$ Adjustment factor is applied in Year -2 (prior to the Year 0 project start), but impacts the O\&M costs starting in Year 0.

4B. 4 Compost Area Operations

Because of the way the WPWMA currently pays for operating services at the facility, the Compost Area base year unit operating cost was calculated using the same approach as the Public and C\&D Areas. Non-landfill operating costs are currently paid in one combined MRF operating fee by the WPWMA. Thus, calculating the base year unit operating cost for the non-landfill components consisted of a weighted average of the calculated per-ton fee for landfill and MRF operating costs using the associated amount of waste that ultimately goes to the MRF and the landfill after it is received in the Public, Compost, and C\&D Areas. The data for these calculations were obtained from the "Tonnages \& Tip Fees" sheet and the "MRF Operating Expenses" sheet in the WPWMA spreadsheet "preliminary budget 18-19.xlsm" and from differences between Plan Concepts. The base cost was then adjusted by the factors listed in Table 4B-4 for the applicable Plan Concepts.

Table 4B-4. Compost Area Operations Adjustment Factors

Plan Concept			Year	Adjustment Factor	Rationale
0	1	2	All	+ 2.12\%	Forecasted tonnage increase year over year to reflect increased tonnage from population growth.
0	1	2	0	+30\%	Increase corresponds to an anticipated additional \$10 per ton over the current $\$ 34$ per ton cost to account for the implementation of aerated static pile (ASP) operating methods.

4B. 5 WPWMA Administrative Operational Costs

The WPWMA Administrative base year unit operating cost was calculated by dividing the total of WPWMA Administrative operating costs in 2017 by the total of inbound tonnage at the facility during that period. Total inbound tonnage was taken from the "Tonnages \& Tip Fees" sheet of WPWMA's spreadsheet "preliminary budget 18-19.xlsm." Administrative base year costs were compiled from the "255 Detail" and "Financial Forecast" sheets of the "preliminary budget 18-19.xlsm" spreadsheet. The cost categories used in the WPWMA Administrative Operating Costs base year were included based on consultation with WPWMA staff. These costs include staffing, operational, technical, consulting, and other costs that are not included in the facility operator's contract, but that are a part of operating the facility. The base cost was then adjusted by the factors listed in Table 4B-5 for the applicable Plan Concepts.

Table 4B-5. WPWMA Administrative Operations Adjustment Factors

Plan Concept	Year	Adjustment Factor	Rationale			
0	1	2	All	$+2.12 \%$		Forecasted tonnage increase year over year to reflect increased tonnage from
:---						
population growth.						

${ }^{\text {a }}$ Adjustment factor is applied in Year -2 (prior to the Year 0 project start), but impacts the O\&M costs starting in Year 0.

4B. 6 Offsite Disposal and Long-haul Trucking Operations

The offsite disposal and long-haul trucking unit cost was based on the assumption of 150 miles round-trip for remote disposal and the unit rate as calculated in the transportation cost model. The assumptions for offsite disposal location were developed by WPWMA staff based on a survey of currently permitted sites with existing or planned capacity in the analysis calculation period and that could reasonably be expected to accept the WPWMA waste for disposal. The trucking cost assumes that trucking is provided under contract; therefore, all trucking costs are included in the per-ton mile rate and are not included as separate capital in the analysis. This calculation includes a range of assumptions such as fuel cost; insurance; truck life and replacement; loading, unloading, and turnaround time; and labor.

The trucking unit cost was multiplied by the projected tonnage and was applied in applicable years as shown in Table 4B-6. The transportation cost model is provided in Figure 4B-1.

Table 4B-6. Offsite Disposal and Long-haul Trucking Operations Applicability

Plan Concept	Years	Rationale
0		31 to 87
1	87	Starts in year after Plan Concept 0 reaches landfill capacity until the last year of analysis.
	Starts in year after Plan Concept 1 reaches landfill capacity (last year of analysis).	
2	71 to 87	Starts in year after Plan Concept 2 reaches landfill capacity until the last year of analysis.

Client: WPWMA

Project: Renewable Placer - Waste Action Plan
Date: Nov-16-2018
Worksheet: JACOBS Transportation Cost Mode
Plan Concept: 0,1,2

Operating Assumptions
Origin Location
Destination
miles (one way)
Average miles per Hour Workdays per Week Annual Workdays
Annual Tons
Annual Trips
Average Tons per Trip Average Loading Time (min.) Average Unloading Time (min.) Average Roundtrip Time (hrs.) Total Time per Trip (hrs)

Labour Assumptions
Driver hours per day
Non-Driving hours per day
Total hours per day
Benefit Percentage
Driver Annual Wage + benefits
Driver Annual W
Trips per Driver
Loads per day
Drivers needed per day
Operational Assumptions
Overhead Percentage
Profit Margin Percentage
Interest Rate
Fuel Cost
Fuel miles/gallon
Fuel Cost per Gallon
Repair \& Maintenance
Truck Cost per mile
Trailer Cost per mile

	Annual Cost per Annual Trucking			
	Truck	Costs	Cost per Ton	Cost per mi
Truck	\$34,663	\$1,474,892	\$3.16	\$0.84
Trailer	\$8,761	\$1,118,355	\$2.40	\$0.64
Labor		\$3,663,520	\$7.85	\$2.09
Fuel		\$2,332,690	\$5.00	\$1.33
R\&M		\$1,224,662	\$2.63	\$0.70
Insurance		\$297,850	\$0.64	\$0.17
License \& Fees		\$94,589	\$0.20	\$0.05
G\&A		\$1,530,984	\$3.28	\$0.88
Profit		\$1,408,505	\$3.02	\$0.81
Total		\$13,146,045	\$28.18	\$7.51

Equipment Cos
Tractor Make and Model
Percent spares
New 2018

15%
42.6
5.0
15%
$\$ 155,000$
$\$ 18,600$
$\$ 0$
$\$ 173,600$
$\$ 22,963$
$\$ 196,563$
3.0
127.7
10.0
10%
$\$ 75,000$
$\$ 9,000$
$\$ 0$
$\$ 84,000$
$\$ 11,111$
$\$ 95,111$

\$8,363,746
\$12,140,921
$\$ 20,504,667$
42.6

See also: https://www.dat.com/blog/post/what-does-it-cost-to-run-your-trucking-company
California
\$1,673 https://www.fhwa.dot.gov/ohim/hwytaxes/2001/pt11b.htm
$\$ 550$ https://www.irs.gov/pub/irs-pdf/f2290.pd
$\$ 7,000$
$\$ 297,850$
\$297,850

Cost per ton-mile
One-way
Two-way

Figure 4B-1. Transportation Cost Model

4B. 7 Post-closure Care Operations

Based on the most recent post-closure care estimate from SCS Engineers (Figure 4B-2), dated September 26, 2017, the post-closure care unit cost is estimated to be approximately $\$ 1,606$ per acre per year (\$369,290 annual divided by 230 acres as stated in Figure 4B-2).

Figure 4B-2. Post-closure Estimate by SCS Engineers, 2017
The post-closure care period begins at the end of landfill life. Therefore, the post-closure care unit cost of $\$ 1,606$ per acre per year was applied to the total post-closure acres for the 30 -year period starting the year after closure of the complete landfill. Table 4B-7 shows the estimated landfill closure years and associated post-closure acreages.

Table 4B-7. Post-closure Care Operations Summary

Plan Concept	Post-closure Acres	Landfill Closure
0	148	Year 26 (2048)
1	321	Year 86 (2108)
2	365	Year 66 (2088)

The analysis also considered that the site may be subject to partial final closure as different modules and landfill areas are filled to capacity. This situation was addressed by the assumption that the landfill operating unit cost would cover the costs of O\&M for the closed portions of the site until the time when post-closure is applicable to the entire site.

Appendix 4B-1
Operational Cost Estimates

	-5	-4	-3	-2	-1	0	1	2	3	4	5
Year	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027
Plan Concept 0											
Landfill Operations (years 0-26)	\$2,026,382.93	\$2,069,342.25	\$2,113,212.30	\$2,158,012.40	\$2,203,762.27	\$3,021,798.82	\$3,085,860.95	\$3,151,281.21	\$3,218,088.37	\$3,286,311.84	\$3,355,981.65
Public Area Operations (years 0-87)	\$646,038.46	\$659,734.48	\$673,720.85	\$688,003.73	\$702,589.41	\$787,743.24	\$883,217.73	\$1,343,550.80	\$1,372,034.08	\$1,401,121.20	\$1,430,824.97
C\&D Area Operations (years 0-87)	\$2,088,179.75	\$2,132,449.16	\$2,177,657.08	\$4,401,480.49	\$4,494,791.87	\$9,084,873.34	\$9,277,472.65	\$9,474,155.07	\$9,675,007.16	\$9,880,117.31	\$10,089,575.80
Compost Area Operations (years 0-87)	\$2,291,087.92	\$2,339,658.98	\$2,389,259.75	\$2,439,912.06	\$2,491,638.19	\$3,291,952.38	\$3,361,741.77	\$3,433,010.70	\$3,505,790.52	\$3,580,113.28	\$3,656,011.68
WPWMA Operational Costs (years 0-87)	\$4,492,155.83	\$4,587,389.54	\$4,684,642.19	\$5,487,879.98	\$5,604,223.04	\$5,723,032.56	\$5,844,360.85	\$5,968,261.30	\$6,094,788.44	\$6,223,997.96	\$7,602,919.97
Long Haul Trucking (years 27-87)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Post Closure Care Costs (years 27-56)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Total Operating Cost Not Including MRF	\$11,543,844.88	\$11,788,574.40	\$12,038,492.17	\$15,175,288.66	\$15,497,004.78	\$21,909,400.34	\$22,452,653.96	\$23,370,259.08	\$23,865,708.58	\$24,371,661.60	\$26,135,314.07
Plan Concept 1											
Landfill Operations (years 0-86)	\$2,026,382.93	\$2,069,342.25	\$2,113,212.30	\$2,158,012.40	\$2,203,762.27	\$3,021,798.82	\$3,085,860.95	\$3,151,281.21	\$3,218,088.37	\$3,286,311.84	\$3,355,981.65
Public Area Operations (years 0-87)	\$646,038.46	\$659,734.48	\$673,720.85	\$688,003.73	\$702,589.41	\$787,743.24	\$804,443.40	\$821,497.60	\$921,063.11	\$1,493,227.52	\$1,524,883.94
C\&D Area Operations (years 0-87)	\$2,088,179.75	\$2,132,449.16	\$2,177,657.08	\$4,401,480.49	\$4,494,791.87	\$9,084,873.34	\$9,277,472.65	\$9,474,155.07	\$9,675,007.16	\$9,880,117.31	\$10,089,575.80
Compost Area Operations (years 0-87)	\$2,291,087.92	\$2,339,658.98	\$2,389,259.75	\$2,439,912.06	\$2,491,638.19	\$3,291,952.38	\$3,361,741.77	\$3,433,010.70	\$3,505,790.52	\$3,580,113.28	\$3,656,011.68
WPWMA Operational Costs (years 0-87)	\$4,492,155.83	\$4,587,389.54	\$4,684,642.19	\$5,487,879.98	\$5,604,223.04	\$5,723,032.56	\$5,844,360.85	\$5,968,261.30	\$6,094,788.44	\$6,223,997.96	\$8,538,149.91
Long Haul Trucking (year 87)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Post Closure Care Costs (year 87)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Total Operating Cost Not Including MRF	\$11,543,844.88	\$11,788,574.40	\$12,038,492.17	\$15,175,288.66	\$15,497,004.78	\$21,909,400.34	\$22,373,879.63	\$22,848,205.88	\$23,414,737.60	\$24,463,767.91	\$27,164,602.98
Plan Concept 2											
Landfill Operations (years 0-66)	\$2,026,382.93	\$2,069,342.25	\$2,113,212.30	\$2,158,012.40	\$2,203,762.27	\$3,021,798.82	\$3,085,860.95	\$3,151,281.21	\$3,218,088.37	\$3,286,311.84	\$3,355,981.65
Public Area Operations (years 0-87)	\$646,038.46	\$659,734.48	\$673,720.85	\$688,003.73	\$702,589.41	\$787,743.24	\$883,217.73	\$1,343,550.80	\$1,372,034.08	\$1,401,121.20	\$1,430,824.97
C\&D Area Operations (years 0-87)	\$2,088,179.75	\$2,132,449.16	\$2,177,657.08	\$4,401,480.49	\$4,494,791.87	\$9,084,873.34	\$9,277,472.65	\$9,474,155.07	\$9,675,007.16	\$9,880,117.31	\$10,089,575.80
Compost Area Operations (years 0-87)	\$2,291,087.92	\$2,339,658.98	\$2,389,259.75	\$2,439,912.06	\$2,491,638.19	\$3,291,952.38	\$3,361,741.77	\$3,433,010.70	\$3,505,790.52	\$3,580,113.28	\$3,656,011.68
WPWMA Operational Costs (years 0-87)	\$4,492,155.83	\$4,587,389.54	\$4,684,642.19	\$5,487,879.98	\$5,604,223.04	\$5,723,032.56	\$5,844,360.85	\$5,968,261.30	\$6,094,788.44	\$6,223,997.96	\$7,914,663.28
Long Haul Trucking (year 67)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Post Closure Care Costs (year 67)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
otal Operating Cost Not Including MRF	\$11,543,844.88	11,788,574.4	2,038,492	175,288.	15,497,004.7	21,909,400.	2,452,653	\$3,370,259.08	23,865,708	24,371,661.	26,447,057.

	6	7	8	9	10	11	12	13	14	15	16
Year	2028	2029	2030	2031	2032	2033	2034	2035	2036	2037	2038
Plan Concept 0											
Landfill Operations (years 0-26)	\$3,427,128.46	\$3,499,783.59	\$3,573,979.00	\$3,649,747.35	\$3,727,122.00	\$3,806,136.98	\$3,886,827.09	\$3,969,227.82	\$4,053,375.45	\$4,139,307.01	\$4,227,060.32
Public Area Operations (years 0-87)	\$1,461,158.46	\$1,492,135.02	\$1,523,768.29	\$1,556,072.17	\$1,589,060.90	\$1,622,748.99	\$1,657,151.27	\$1,692,282.88	\$1,728,159.28	\$1,764,796.25	\$1,802,209.93
C\&D Area Operations (years 0-87)	\$10,303,474.81	\$10,521,908.47	\$10,744,972.93	\$10,972,766.36	\$11,205,389.00	\$11,442,943.25	\$11,685,533.65	\$11,933,266.96	\$12,186,252.22	\$12,444,600.77	\$12,708,426.30
Compost Area Operations (years 0-87)	\$3,733,519.13	\$3,812,669.74	\$3,893,498.33	\$3,976,040.50	\$4,060,332.56	\$4,146,411.61	\$4,234,315.53	\$4,324,083.02	\$4,415,753.58	\$4,509,367.56	\$4,604,966.15
WPWMA Operational Costs (years 0-87)	\$7,764,101.87	\$7,928,700.83	\$8,096,789.29	\$8,268,441.22	\$8,443,732.17	\$8,622,739.30	\$8,805,541.37	\$8,992,218.85	\$9,182,853.89	\$9,377,530.39	\$9,576,334.03
Long Haul Trucking (years 27-87)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Post Closure Care Costs (years 27-56)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Total Operating Cost Not Including MRF	\$26,689,382.73	\$27,255,197.65	\$27,833,007.84	\$28,423,067.60	\$29,025,636.64	\$29,640,980.13	\$30,269,368.91	\$30,911,079.53	\$31,566,394.42	\$32,235,601.98	\$32,918,996.74
Plan Concept 1											
Landfill Operations (years 0-86)	\$3,427,128.46	\$3,499,783.59	\$3,573,979.00	\$3,649,747.35	\$3,727,122.00	\$3,806,136.98	\$3,886,827.09	\$3,969,227.82	\$4,053,375.45	\$4,139,307.01	\$4,227,060.32
Public Area Operations (years 0-87)	\$1,557,211.48	\$1,590,224.36	\$1,623,937.12	\$1,658,364.59	\$1,693,521.91	\$1,729,424.58	\$1,766,088.38	\$1,803,529.45	\$1,841,764.28	\$1,880,809.68	\$1,920,682.85
C\&D Area Operations (years 0-87)	\$10,303,474.81	\$10,521,908.47	\$10,744,972.93	\$10,972,766.36	\$11,205,389.00	\$11,442,943.25	\$11,685,533.65	\$11,933,266.96	\$12,186,252.22	\$12,444,600.77	\$12,708,426.30
Compost Area Operations (years 0-87)	\$3,733,519.13	\$3,812,669.74	\$3,893,498.33	\$3,976,040.50	\$4,060,332.56	\$4,146,411.61	\$4,234,315.53	\$4,324,083.02	\$4,415,753.58	\$4,509,367.56	\$4,604,966.15
WPWMA Operational Costs (years 0-87)	\$8,719,158.68	\$8,904,004.85	\$9,092,769.75	\$9,285,536.47	\$9,482,389.84	\$9,683,416.51	\$9,888,704.94	\$10,098,345.48	\$10,312,430.41	\$10,531,053.93	\$10,754,312.27
Long Haul Trucking (year 87)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Post Closure Care Costs (year 87)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Total Operating Cost Not Including MRF	\$27,740,492.56	\$28,328,591.00	\$28,929,157.13	\$29,542,455.26	\$30,168,755.32	\$30,808,332.93	\$31,461,469.59	\$32,128,452.74	\$32,809,575.94	\$33,505,138.95	\$34,215,447.90
Plan Concept 2											
Landfill Operations (years 0-66)	\$3,427,128.46	\$3,499,783.59	\$3,573,979.00	\$3,649,747.35	\$3,727,122.00	\$3,806,136.98	\$3,886,827.09	\$3,969,227.82	\$4,053,375.45	\$4,139,307.01	\$4,227,060.32
Public Area Operations (years 0-87)	\$1,461,158.46	\$1,492,135.02	\$1,523,768.29	\$1,556,072.17	\$1,589,060.90	\$1,622,748.99	\$1,657,151.27	\$1,692,282.88	\$1,728,159.28	\$1,764,796.25	\$1,802,209.93
C\&D Area Operations (years 0-87)	\$10,303,474.81	\$10,521,908.47	\$10,744,972.93	\$10,972,766.36	\$11,205,389.00	\$11,442,943.25	\$11,685,533.65	\$11,933,266.96	\$12,186,252.22	\$12,444,600.77	\$12,708,426.30
Compost Area Operations (years 0-87)	\$3,733,519.13	\$3,812,669.74	\$3,893,498.33	\$3,976,040.50	\$4,060,332.56	\$4,146,411.61	\$4,234,315.53	\$4,324,083.02	\$4,415,753.58	\$4,509,367.56	\$4,604,966.15
WPWMA Operational Costs (years 0-87)	\$8,082,454.14	\$8,253,802.17	\$8,428,782.78	\$8,607,472.97	\$8,789,951.40	\$8,976,298.37	\$9,166,595.89	\$9,360,927.73	\$9,559,379.39	\$9,762,038.24	\$9,968,993.45
Long Haul Trucking (year 67)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Post Closure Care Costs (year 67)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Total Operating Cost Not Including MRF	\$27,007,735.00	\$27,580,298.99	\$28,165,001.32	\$28,762,099.35	\$29,371,855.86	\$29,994,539.20	\$30,630,423.43	\$31,279,788.41	\$31,942,919.93	\$32,620,109.83	\$33,311,656.16

	17	18	19	20	21	22	23	24	25	26	27	28
Year	2039	2040	2041	2042	2043	2044	2045	2046	2047	2048	2049	2050
Plan Concept 0												
Landfill Operations (years 0-26)	\$4,316,674.00	\$4,408,187.49	\$4,501,641.06	\$4,597,075.85	\$4,694,533.86	\$4,794,057.98	\$4,895,692.01	\$4,999,480.68	\$5,105,469.67	\$5,213,705.63	\$0.00	
Public Area Operations (years $0-87$)	\$1,840,416.78	\$1,879,433.62	\$1,919,277.61	\$1,959,966.30	\$2,001,517.58	\$2,043,949.76	\$2,087,281.49	\$2,131,531.86	\$2,176,720.34	\$2,222,866.81	\$2,269,991.58	\$2,318,115.40
C\&D Area Operations (years 0-87)	\$12,977,844.94	\$13,252,975.25	\$13,533,938.33	\$13,820,857.82	\$14,113,860.01	\$14,413,073.84	\$14,718,631.01	\$15,030,665.98	\$15,349,316.10	\$15,674,721.60	\$16,007,025.70	\$16,346,374.65
Compost Area Operations (years 0-87)	\$4,702,591.43	\$4,802,286.37	\$4,904,094.84	\$5,008,061.65	\$5,114,232.56	\$5,222,654.29	\$5,333,374.56	\$5,446,442.10	\$5,561,906.68	\$5,679,819.10	\$5,800,231.26	\$5,923,196.17
WPWMA Operational Costs (years 0-87)	\$9,779,352.31	\$9,986,674.58	\$10,198,392.09	\$10,414,598.00	\$10,635,387.47	\$10,860,857.69	\$11,091,107.87	\$11,326,239.36	\$11,566,355.63	\$11,811,562.37	\$12,061,967.50	\$12,317,681.21
Long Haul Trucking (years 27-87)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$47,356,803.30	\$48,360,767.53
Post Closure Care Costs (years 27-56)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$237,688.00	\$237,688.00
Total Operating Cost Not Including MRF	\$33,616,879.47	\$34,329,557.32	\$35,057,343.93	\$35,800,559.62	\$36,559,531.49	\$37,334,593.56	\$38,126,086.94	\$38,934,359.98	\$39,759,768.41	\$40,602,675.51	\$83,733,707.34	\$85,503,822.95
Plan Concept 1												
Landfill Operations (years 0-86)	\$4,316,674.00	\$4,408,187.49	\$4,501,641.06	\$4,597,075.85	\$4,694,533.86	\$4,794,057.98	\$4,895,692.01	\$4,999,480.68	\$5,105,469.67	\$5,213,705.63	\$5,324,236.18	\$5,437,109.99
Public Area Operations (years 0-87)	\$1,961,401.32	\$2,002,983.03	\$2,045,446.27	\$2,088,809.73	\$2,133,092.50	\$2,178,314.06	\$2,224,494.32	\$2,271,653.60	\$2,319,812.65	\$2,368,992.68	\$2,419,215.33	\$2,470,502.69
C\&D Area Operations (years 0-87)	\$12,977,844.94	\$13,252,975.25	\$13,533,938.33	\$13,820,857.82	\$14,113,860.01	\$14,413,073.84	\$14,718,631.01	\$15,030,665.98	\$15,349,316.10	\$15,674,721.60	\$16,007,025.70	\$16,346,374.65
Compost Area Operations (years 0-87)	\$4,702,591.43	\$4,802,286.37	\$4,904,094.84	\$5,008,061.65	\$5,114,232.56	\$5,222,654.29	\$5,333,374.56	\$5,446,442.10	\$5,561,906.68	\$5,679,819.10	\$5,800,231.26	\$5,923,196.17
WPWMA Operational Costs (years 0-87)	\$10,982,303.69	\$11,215,128.53	\$11,452,889.26	\$11,695,690.51	\$11,943,639.15	\$12,196,844.30	\$12,455,417.40	\$12,719,472.25	\$12,989,125.06	\$13,264,494.51	\$13,545,701.79	\$13,832,870.67
Long Haul Trucking (year 87)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Post Closure Care Costs (year 87)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Total Operating Cost Not Including MRF	\$34,940,815.39	\$35,681,560.68	\$36,438,009.76	\$37,210,495.57	\$37,999,358.08	\$38,804,944.47	\$39,627,609.29	\$40,467,714.61	\$41,325,630.16	\$42,201,733.52	\$43,096,410.27	\$44,010,054.16
Plan Concept 2												
Landfill Operations (years 0-66)	\$4,316,674.00	\$4,408,187.49	\$4,501,641.06	\$4,597,075.85	\$4,694,533.86	\$4,794,057.98	\$4,895,692.01	\$4,999,480.68	\$5,105,469.67	\$5,213,705.63	\$5,584,921.47	\$5,703,321.80
Public Area Operations (years 0-87)	\$1,840,416.78	\$1,879,433.62	\$1,919,277.61	\$1,959,966.30	\$2,001,517.58	\$2,043,949.76	\$2,087,281.49	\$2,131,531.86	\$2,176,720.34	\$2,222,866.81	\$2,269,991.58	\$2,318,115.40
C\&D Area Operations (years 0-87)	\$12,977,844.94	\$13,252,975.25	\$13,533,938.33	\$13,820,857.82	\$14,113,860.01	\$14,413,073.84	\$14,718,631.01	\$15,030,665.98	\$15,349,316.10	\$15,674,721.60	\$16,007,025.70	\$16,346,374.65
Compost Area Operations (years 0-87)	\$4,702,591.43	\$4,802,286.37	\$4,904,094.84	\$5,008,061.65	\$5,114,232.56	\$5,222,654.29	\$5,333,374.56	\$5,446,442.10	\$5,561,906.68	\$5,679,819.10	\$5,800,231.26	\$5,923,196.17
WPWMA Operational Costs (years 0-87)	\$10,180,336.11	\$10,396,159.23	\$10,616,557.81	\$10,841,628.83	\$11,071,471.37	\$11,306,186.56	\$11,545,877.71	\$11,790,650.32	\$12,040,612.11	\$12,295,873.09	\$12,556,545.59	\$12,822,744.36
Long Haul Trucking (year 67)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Post Closure Care Costs (year 67)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00

	29	30	31	32	33	34	35	36	37	38	39	40
Year	2051	2052	2053	2054	2055	2056	2057	2058	2059	2060	2061	2062
Plan Concept 0												
Landfill Operations (years 0-26)												
Public Area Operations (years 0-87)	\$2,341,296.56	\$2,364,709.52	\$2,388,356.62	\$2,412,240.19	\$2,436,362.59	\$2,460,726.21	\$2,485,333.48	\$2,510,186.81	\$2,535,288.68	\$2,560,641.56	\$2,586,247.98	\$2,612,110.46
C\&D Area Operations (years 0-87)	\$16,509,838.39	\$16,674,936.78	\$16,841,686.14	\$17,010,103.01	\$17,180,204.04	\$17,352,006.08	\$17,525,526.14	\$17,700,781.40	\$17,877,789.21	\$18,056,567.10	\$18,237,132.77	\$18,419,504.10
Compost Area Operations (years 0-87)	\$5,982,428.13	\$6,042,252.41	\$6,102,674.93	\$6,163,701.68	\$6,225,338.70	\$6,287,592.09	\$6,350,468.01	\$6,413,972.69	\$6,478,112.41	\$6,542,893.54	\$6,608,322.47	\$6,674,405.70
WPWMA Operational Costs (years 0-87)	\$12,440,858.02	\$12,565,266.60	\$12,690,919.26	\$12,817,828.46	\$12,946,006.74	\$13,075,466.81	\$13,206,221.48	\$13,338,283.69	\$13,471,666.53	\$13,606,383.19	\$13,742,447.03	\$13,879,871.50
Long Haul Trucking (years 27-87)	\$48,844,375.21	\$49,332,818.96	\$49,826,147.15	\$50,324,408.62	\$50,827,652.71	\$51,335,929.23	\$51,849,288.52	\$52,367,781.41	\$52,891,459.22	\$53,420,373.82	\$53,954,577.55	\$54,494,123.33
Post Closure Care Costs (years 27-56)	\$237,688.00	\$237,688.00	\$237,688.00	\$237,688.00	\$237,688.00	\$237,688.00	\$237,688.00	\$237,688.00	\$237,688.00	\$237,688.00	\$237,688.00	\$237,688.00
Total Operating Cost Not Including MRF	\$86,356,484.30	\$87,217,672.26	\$88,087,472.11	\$88,965,969.95	\$89,853,252.77	\$90,749,408.42	\$91,654,525.62	\$92,568,694.00	\$93,492,004.06	\$94,424,547.22	\$95,366,415.81	\$96,317,703.09
Plan Concept 1												
Landfill Operations (years 0-86)	\$5,491,481.09	\$5,546,395.90	\$5,601,859.86	\$5,657,878.46	\$5,714,457.24	\$5,771,601.82	\$5,829,317.84	\$5,887,611.01	\$5,946,487.12	\$6,005,952.00	\$6,066,011.52	\$6,126,671.63
Public Area Operations (years 0-87)	\$2,495,207.72	\$2,520,159.79	\$2,545,361.39	\$2,570,815.01	\$2,596,523.16	\$2,622,488.39	\$2,648,713.27	\$2,675,200.40	\$2,701,952.41	\$2,728,971.93	\$2,756,261.65	\$2,783,824.27
C\&D Area Operations (years 0-87)	\$16,509,838.39	\$16,674,936.78	\$16,841,686.14	\$17,010,103.01	\$17,180,204.04	\$17,352,006.08	\$17,525,526.14	\$17,700,781.40	\$17,877,789.21	\$18,056,567.10	\$18,237,132.77	\$18,419,504.10
Compost Area Operations (years 0-87)	\$5,982,428.13	\$6,042,252.41	\$6,102,674.93	\$6,163,701.68	\$6,225,338.70	\$6,287,592.09	\$6,350,468.01	\$6,413,972.69	\$6,478,112.41	\$6,542,893.54	\$6,608,322.47	\$6,674,405.70
WPWMA Operational Costs (years 0-87)	\$13,971,199.38	\$14,110,911.37	\$14,252,020.49	\$14,394,540.69	\$14,538,486.10	\$14,683,870.96	\$14,830,709.67	\$14,979,016.76	\$15,128,806.93	\$15,280,095.00	\$15,432,895.95	\$15,587,224.91
Long Haul Trucking (year 87)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Post Closure Care Costs (year 87)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Total Operating Cost Not Including MRF	\$44,450,154.71	\$44,894,656.25	\$45,343,602.82	\$45,797,038.84	\$46,255,009.23	\$46,717,559.32	\$47,184,734.92	\$47,656,582.27	\$48,133,148.09	\$48,614,479.57	\$49,100,624.37	\$49,591,630.61
Plan Concept 2												
Landfill Operations (years 0-66)	\$5,760,355.02	\$5,817,958.57	\$5,876,138.15	\$5,934,899.54	\$5,994,248.53	\$6,054,191.02	\$6,114,732.93	\$6,175,880.26	\$6,237,639.06	\$6,300,015.45	\$6,363,015.60	\$6,426,645.76
Public Area Operations (years 0-87)	\$2,341,296.56	\$2,364,709.52	\$2,388,356.62	\$2,412,240.19	\$2,436,362.59	\$2,460,726.21	\$2,485,333.48	\$2,510,186.81	\$2,535,288.68	\$2,560,641.56	\$2,586,247.98	\$2,612,110.46
C\&D Area Operations (years 0-87)	\$16,509,838.39	\$16,674,936.78	\$16,841,686.14	\$17,010,103.01	\$17,180,204.04	\$17,352,006.08	\$17,525,526.14	\$17,700,781.40	\$17,877,789.21	\$18,056,567.10	\$18,237,132.77	\$18,419,504.10
Compost Area Operations (years 0-87)	\$5,982,428.13	\$6,042,252.41	\$6,102,674.93	\$6,163,701.68	\$6,225,338.70	\$6,287,592.09	\$6,350,468.01	\$6,413,972.69	\$6,478,112.41	\$6,542,893.54	\$6,608,322.47	\$6,674,405.70
WPWMA Operational Costs (years 0-87)	\$12,950,971.81	\$13,080,481.52	\$13,211,286.34	\$13,343,399.20	\$13,476,833.19	\$13,611,601.53	\$13,747,717.54	\$13,885,194.72	\$14,024,046.66	\$14,164,287.13	\$14,305,930.00	\$14,448,989.30
Long Haul Trucking (year 67)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Post Closure Care Costs (year 67)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00

	41	42	43	44	45	46	47	48	49	50	51	52
Year	2063	2064	2065	2066	2067	2068	2069	2070	2071	2072	2073	2074
Plan Concept 0												
Landfill Operations (years 0-26)												
Public Area Operations (years 0-87)	\$2,638,231.56	\$2,664,613.88	\$2,691,260.02	\$2,718,172.62	\$2,745,354.35	\$2,772,807.89	\$2,800,535.97	\$2,828,541.33	\$2,856,826.74	\$2,885,395.01	\$2,914,248.96	\$2,943,391.45
C\&D Area Operations (years 0-87)	\$18,603,699.14	\$18,789,736.13	\$18,977,633.50	\$19,167,409.83	\$19,359,083.93	\$19,552,674.77	\$19,748,201.52	\$19,945,683.53	\$20,145,140.37	\$20,346,591.77	\$20,550,057.69	\$20,755,558.27
Compost Area Operations (years 0-87)	\$6,741,149.75	\$6,808,561.25	\$6,876,646.86	\$6,945,413.33	\$7,014,867.47	\$7,085,016.14	\$7,155,866.30	\$7,227,424.97	\$7,299,699.22	\$7,372,696.21	\$7,446,423.17	\$7,520,887.40
WPWMA Operational Costs (years 0-87)	\$14,018,670.21	\$14,158,856.91	\$14,300,445.48	\$14,443,449.94	\$14,587,884.44	\$14,733,763.28	\$14,881,100.91	\$15,029,911.92	\$15,180,211.04	\$15,332,013.15	\$15,485,333.28	\$15,640,186.62
Long Haul Trucking (years 27-87)	\$55,039,064.56	\$55,589,455.21	\$56,145,349.76	\$56,706,803.26	\$57,273,871.29	\$57,846,610.00	\$58,425,076.10	\$59,009,326.87	\$59,599,420.13	\$60, 195,414.34	\$60,797,368.48	\$61,405,342.16
Post Closure Care Costs (years 27-56)	\$237,688.00	\$237,688.00	\$237,688.00	\$237,688.00	\$237,688.00	\$237,688.00	\$237,688.00	\$237,688.00	\$237,688.00	\$237,688.00	\$237,688.00	\$237,688.00
Total Operating Cost Not Including MRF	\$97,278,503.24	\$98,248,911.39	\$99,229,023.62	\$100,218,936.98	\$101,218,749.47	\$102,228,560.08	\$103,248,468.81	\$104,278,576.61	\$105,318,985.50	\$106,369,798.47	\$107,431,119.58	\$108,503,053.89
Plan Concept 1												
Landfill Operations (years 0-86)	\$6,187,938.35	\$6,249,817.73	\$6,312,315.91	\$6,375,439.07	\$6,439,193.46	\$6,503,585.39	\$6,568,621.25	\$6,634,307.46	\$6,700,650.53	\$6,767,657.04	\$6,835,333.61	\$6,903,686.94
Public Area Operations (years 0-87)	\$2,811,662.51	\$2,839,779.14	\$2,868,176.93	\$2,896,858.70	\$2,925,827.28	\$2,955,085.56	\$2,984,636.41	\$3,014,482.78	\$3,044,627.60	\$3,075,073.88	\$3,105,824.62	\$3,136,882.87
C\&D Area Operations (years 0-87)	\$18,603,699.14	\$18,789,736.13	\$18,977,633.50	\$19,167,409.83	\$19,359,083.93	\$19,552,674.77	\$19,748,201.52	\$19,945,683.53	\$20,145,140.37	\$20,346,591.77	\$20,550,057.69	\$20,755,558.27
Compost Area Operations (years 0-87)	\$6,741,149.75	\$6,808,561.25	\$6,876,646.86	\$6,945,413.33	\$7,014,867.47	\$7,085,016.14	\$7,155,866.30	\$7,227,424.97	\$7,299,699.22	\$7,372,696.21	\$7,446,423.17	\$7,520,887.40
WPWMA Operational Costs (years 0-87)	\$15,743,097.16	\$15,900,528.13	\$16,059,533.41	\$16,220,128.75	\$16,382,330.03	\$16,546,153.34	\$16,711,614.87	\$16,878,731.02	\$17,047,518.33	\$17,217,993.51	\$17,390,173.45	\$17,564,075.18
Long Haul Trucking (year 87)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Post Closure Care Costs (year 87)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Total Operating Cost Not Including MRF	\$50,087,546.92	\$50,588,422.39	\$51,094,306.61	\$51,605,249.68	\$52,121,302.17	\$52,642,515.19	\$53,168,940.35	\$53,700,629.75	\$54,237,636.05	\$54,780,012.41	\$55,327,812.53	\$55,881,090.66
Plan Concept 2												
Landfill Operations (years 0-66)	\$6,490,912.22	\$6,555,821.34	\$6,621,379.55	\$6,687,593.35	\$6,754,469.28	\$6,822,013.98	\$6,890,234.11	\$6,959,136.46	\$7,028,727.82	\$7,099,015.10	\$7,170,005.25	\$7,241,705.30
Public Area Operations (years 0-87)	\$2,638,231.56	\$2,664,613.88	\$2,691,260.02	\$2,718,172.62	\$2,745,354.35	\$2,772,807.89	\$2,800,535.97	\$2,828,541.33	\$2,856,826.74	\$2,885,395.01	\$2,914,248.96	\$2,943,391.45
C\&D Area Operations (years 0-87)	\$18,603,699.14	\$18,789,736.13	\$18,977,633.50	\$19,167,409.83	\$19,359,083.93	\$19,552,674.77	\$19,748,201.52	\$19,945,683.53	\$20,145,140.37	\$20,346,591.77	\$20,550,057.69	\$20,755,558.27
Compost Area Operations (years 0-87)	\$6,741,149.75	\$6,808,561.25	\$6,876,646.86	\$6,945,413.33	\$7,014,867.47	\$7,085,016.14	\$7,155,866.30	\$7,227,424.97	\$7,299,699.22	\$7,372,696.21	\$7,446,423.17	\$7,520,887.40
WPWMA Operational Costs (years 0-87)	\$14,593,479.19	\$14,739,413.99	\$14,886,808.13	\$15,035,676.21	\$15,186,032.97	\$15,337,893.30	\$15,491,272.23	\$15,646,184.95	\$15,802,646.80	\$15,960,673.27	\$16,120,280.00	\$16,281,482.80
Long Haul Trucking (year 67)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Post Closure Care Costs (year 67)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Total Operating Cost Not Including MRF	\$49,067,471.87	\$49,558,146.59	\$50,053,728.06	\$50,554,265.34	\$51,059,807.99	\$51,570,406.07	\$52,086,110.13	\$52,606,971.24	\$53,133,040.95	\$53,664,371.36	\$54,201,015.07	\$54,743,025.22

	53	54	55	56	57	58	59	60	61	62	63
Year	2075	2076	2077	2078	2079	2080	2081	2082	2083	2084	2085
Plan Concept 0											
Landfill Operations (years 0-26)											
Public Area Operations (years 0-87)	\$2,972,825.36	\$3,002,553.62	\$3,032,579.15	\$3,062,904.94	\$3,093,533.99	\$3,124,469.33	\$3,155,714.03	\$3,187,271.17	\$3,219,143.88	\$3,251,335.32	\$3,283,848.67
C\&D Area Operations (years 0-87)	\$20,963,113.85	\$21,172,744.99	\$21,384,472.44	\$21,598,317.16	\$21,814,300.33	\$22,032,443.34	\$22,252,767.77	\$22,475,295.45	\$22,700,048.40	\$22,927,048.89	\$23,156,319.37
Compost Area Operations (years 0-87)	\$7,596,096.28	\$7,672,057.24	\$7,748,777.81	\$7,826,265.59	\$7,904,528.24	\$7,983,573.53	\$8,063,409.26	\$8,144,043.35	\$8,225,483.79	\$8,307,738.63	\$8,390,816.01
WPWMA Operational Costs (years 0-87)	\$15,796,588.48	\$15,954,554.37	\$16,114,099.91	\$16,275,240.91	\$16,437,993.32	\$16,602,373.25	\$16,768,396.99	\$16,936,080.96	\$17,105,441.77	\$17,276,496.18	\$17,449,261.14
Long Haul Trucking (years 27-87)	\$62,019,395.58	\$62,639,589.54	\$63,265,985.44	\$63,898,645.29	\$64,537,631.74	\$65,183,008.06	\$65,834,838.14	\$66,493,186.52	\$67,158,118.39	\$67,829,699.57	\$68,507,996.57
Post Closure Care Costs (years 27-56)	\$237,688.00	\$237,688.00	\$237,688.00	\$237,688.00							
Total Operating Cost Not Including MRF	\$109,585,707.55	\$110,679,187.75	\$111,783,602.75	\$112,899,061.89	\$113,787,987.63	\$114,925,867.51	\$116,075,126.18	\$117,235,877.45	\$118,408,236.22	\$119,592,318.58	\$120,788,241.77
Plan Concept 1											
Landfill Operations (years 0-86)	\$6,972,723.81	\$7,042,451.05	\$7,112,875.56	\$7,184,004.32	\$7,255,844.36	\$7,328,402.80	\$7,401,686.83	\$7,475,703.70	\$7,550,460.74	\$7,625,965.35	\$7,702,225.00
Public Area Operations (years 0-87)	\$3,168,251.69	\$3,199,934.21	\$3,231,933.55	\$3,264,252.89	\$3,296,895.42	\$3,329,864.37	\$3,363,163.02	\$3,396,794.65	\$3,430,762.59	\$3,465,070.22	\$3,499,720.92
C\&D Area Operations (years 0-87)	\$20,963,113.85	\$21,172,744.99	\$21,384,472.44	\$21,598,317.16	\$21,814,300.33	\$22,032,443.34	\$22,252,767.77	\$22,475,295.45	\$22,700,048.40	\$22,927,048.89	\$23,156,319.37
Compost Area Operations (years 0-87)	\$7,596,096.28	\$7,672,057.24	\$7,748,777.81	\$7,826,265.59	\$7,904,528.24	\$7,983,573.53	\$8,063,409.26	\$8,144,043.35	\$8,225,483.79	\$8,307,738.63	\$8,390,816.01
WPWMA Operational Costs (years 0-87)	\$17,739,715.93	\$17,917,113.09	\$18,096,284.22	\$18,277,247.06	\$18,460,019.53	\$18,644,619.73	\$18,831,065.93	\$19,019,376.59	\$19,209,570.35	\$19,401,666.06	\$19,595,682.72
Long Haul Trucking (year 87)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Post Closure Care Costs (year 87)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Total Operating Cost Not Including MRF	\$56,439,901.56	\$57,004,300.58	\$57,574,343.58	\$58,150,087.02	\$58,731,587.89	\$59,318,903.77	\$59,912,092.81	\$60,511,213.74	\$61,116,325.87	\$61,727,489.13	\$62,344,764.02
Plan Concept 2											
Landfill Operations (years 0-66)	\$7,314,122.36	\$7,387,263.58	\$7,461,136.21	\$7,535,747.58	\$7,611,105.05	\$7,687,216.10	\$7,764,088.26	\$7,841,729.15	\$7,920,146.44	\$7,999,347.90	\$8,079,341.38
Public Area Operations (years 0-87)	\$2,972,825.36	\$3,002,553.62	\$3,032,579.15	\$3,062,904.94	\$3,093,533.99	\$3,124,469.33	\$3,155,714.03	\$3,187,271.17	\$3,219,143.88	\$3,251,335.32	\$3,283,848.67
C\&D Area Operations (years 0-87)	\$20,963,113.85	\$21,172,744.99	\$21,384,472.44	\$21,598,317.16	\$21,814,300.33	\$22,032,443.34	\$22,252,767.77	\$22,475,295.45	\$22,700,048.40	\$22,927,048.89	\$23,156,319.37
Compost Area Operations (years 0-87)	\$7,596,096.28	\$7,672,057.24	\$7,748,777.81	\$7,826,265.59	\$7,904,528.24	\$7,983,573.53	\$8,063,409.26	\$8,144,043.35	\$8,225,483.79	\$8,307,738.63	\$8,390,816.01
WPWMA Operational Costs (years 0-87)	\$16,444,297.63	\$16,608,740.61	\$16,774,828.02	\$16,942,576.30	\$17,112,002.06	\$17,283,122.08	\$17,455,953.30	\$17,630,512.83	\$17,806,817.96	\$17,984,886.14	\$18,164,735.00
Long Haul Trucking (year 67)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Post Closure Care Costs (year 67)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Total Operating Cost Not Including MRF	\$55,290,455.47	\$55,843,360.03	\$56,401,793.63	\$56,965,811.57	\$57,535,469.68	\$58,110,824.38	\$58,691,932.62	\$59,278,851.95	\$59,871,640.47	\$60,470,356.87	\$61,075,060.44

	64	65	66	67	68	69	70	71	72	73	74
Year	2086	2087	2088	2089	2090	2091	2092	2093	2094	2095	2096
Plan Concept 0											
Landfill Operations (years 0-26)											
Public Area Operations (years 0-87)	\$3,316,687.16	\$3,349,854.03	\$3,383,352.57	\$3,417,186.09	\$3,451,357.96	\$3,485,871.54	\$3,520,730.25	\$3,555,937.55	\$3,591,496.93	\$3,627,411.90	\$3,663,686.02
C\&D Area Operations (years 0-87)	\$23,387,882.57	\$23,621,761.39	\$23,857,979.01	\$24,096,558.80	\$24,337,524.39	\$24,580,899.63	\$24,826,708.63	\$25,074,975.71	\$25,325,725.47	\$25,578,982.72	\$25,834,772.55
Compost Area Operations (years 0-87)	\$8,474,724.17	\$8,559,471.41	\$8,645,066.13	\$8,731,516.79	\$8,818,831.96	\$8,907,020.28	\$8,996,090.48	\$9,086,051.38	\$9,176,911.90	\$9,268,881.02	\$9,361,367.83
WPWMA Operational Costs (years 0-87)	\$17,623,753.76	\$17,799,991.29	\$17,977,991.21	\$18,157,771.12	\$18,339,348.83	\$18,522,742.32	\$18,707,969.74	\$18,895,049.44	\$19,083,999.93	\$19,274,839.93	\$19,467,588.33
Long Haul Trucking (years 27-87)	\$69,193,076.53	\$69,885,007.30	\$70,583,857.37	\$71,289,695.95	\$72,002,592.90	\$72,722,618.83	\$73,449,845.02	\$74,184,343.47	\$74,926,186.91	\$75,675,448.78	\$76,432,203.26
Post Closure Care Costs (years 27-56)											
Total Operating Cost Not Including MRF	\$121,996,124.19	\$123,216,085.43	\$124,448,246.28	\$125,692,728.75	\$126,949,656.03	\$128,219,152.59	\$129,501,344.12	\$130,796,357.56	\$132,104,321.14	\$133,425,364.35	\$134,759,617.99
Plan Concept 1											
Landfill Operations (years 0-86)	\$7,779,247.25	\$7,857,039.72	\$7,935,610.12	\$8,014,966.22	\$8,095,115.88	\$8,176,067.04	\$8,257,827.71	\$8,340,405.99	\$8,423,810.05	\$8,508,048.15	\$8,593,128.63
Public Area Operations (years 0-87)	\$3,534,718.13	\$3,570,065.31	\$3,605,765.96	\$3,641,823.62	\$3,678,241.86	\$3,715,024.28	\$3,752,174.52	\$3,789,696.27	\$3,827,593.23	\$3,865,869.16	\$3,904,527.85
C\&D Area Operations (years 0-87)	\$23,387,882.57	\$23,621,761.39	\$23,857,979.01	\$24,096,558.80	\$24,337,524.39	\$24,580,899.63	\$24,826,708.63	\$25,074,975.71	\$25,325,725.47	\$25,578,982.72	\$25,834,772.55
Compost Area Operations (years 0-87)	\$8,474,724.17	\$8,559,471.41	\$8,645,066.13	\$8,731,516.79	\$8,818,831.96	\$8,907,020.28	\$8,996,090.48	\$9,086,051.38	\$9,176,911.90	\$9,268,681.02	\$9,361,367.83
WPWMA Operational Costs (years 0-87)	\$19,791,639.54	\$19,989,555.94	\$20,189,451.50	\$20,391,346.01	\$20,595,259.47	\$20,801,212.07	\$21,009,224.19	\$21,219,316.43	\$21,431,509.60	\$21,645,824.69	\$21,862,282.94
Long Haul Trucking (year 87)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Post Closure Care Costs (year 87)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Total Operating Cost Not Including MRF	\$62,968,211.66	\$63,597,893.78	\$64,233,872.72	\$64,876,211.44	\$65,524,973.56	\$66,180,223.29	\$66,842,025.53	\$67,510,445.78	\$68,185,550.24	\$68,867,405.74	\$69,556,079.80
Plan Concept 2											
Landfill Operations (years 0-66)	\$8,160,134.80	\$8,241,736.14	\$8,324,153.50	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Public Area Operations (years 0-87)	\$3,316,687.16	\$3,349,854.03	\$3,383,352.57	\$3,417,186.09	\$3,451,357.96	\$3,485,871.54	\$3,520,730.25	\$3,555,937.55	\$3,591,496.93	\$3,627,411.90	\$3,663,686.02
C\&D Area Operations (years 0-87)	\$23,387,882.57	\$23,621,761.39	\$23,857,979.01	\$24,096,558.80	\$24,337,524.39	\$24,580,899.63	\$24,826,708.63	\$25,074,975.71	\$25,325,725.47	\$25,578,982.72	\$25,834,772.55
Compost Area Operations (years 0-87)	\$8,474,724.17	\$8,559,471.41	\$8,645,066.13	\$8,731,516.79	\$8,818,831.96	\$8,907,020.28	\$8,996,090.48	\$9,086,051.38	\$9,176,911.90	\$9,268,681.02	\$9,361,367.83
WPWMA Operational Costs (years 0-87)	\$18,346,382.35	\$18,529,846.18	\$18,715,144.64	\$18,902,296.08	\$19,091,319.04	\$19,282,232.24	\$19,475,054.56	\$19,669,805.10	\$19,866,503.15	\$20,065,168.19	\$20,265,819.87
Long Haul Trucking (year 67)	\$0.00	\$0.00	\$0.00	\$71,289,695.95	\$72,002,592.90	\$72,722,618.83	\$73,449,845.02	\$74,184,343.47	\$74,926,186.91	\$75,675,448.78	\$76,432,203.26
Post Closure Care Costs (year 67)	\$0.00	\$0.00	\$0.00	\$586,190.00	\$586,190.00	\$586,190.00	\$586,190.00	\$586,190.00	\$586,190.00	\$586,190.00	\$586,190.00
Total Operating Cost Not Including MRF	\$61,685,811.04	\$62,302,669.16	\$62,925,695.85	\$127,023,443.71	\$128,287,816.25	\$129,564,832.51	\$130,854,618.94	\$132,157,303.22	\$133,473,014.36	\$134,801,882.60	\$136,144,039.53

	75	76	77	78	79	80	81	82	83	84	85
Year	2097	2098	2099	2100	2101	2102	2103	2104	2105	2106	2107
Plan Concept 0											
Landfill Operations (years 0-26)											
Public Area Operations (years 0-87)	\$3,700,322.88	\$3,737,326.11	\$3,774,699.37	\$3,812,446.36	\$3,850,570.82	\$3,889,076.53	\$3,927,967.30	\$3,967,246.97	\$4,006,919.44	\$4,046,988.63	\$4,087,458.52
C\&D Area Operations (years 0-87)	\$26,093,120.28	\$26,354,051.48	\$26,617,591.99	\$26,883,767.91	\$27,152,605.59	\$27,424,131.65	\$27,698,372.97	\$27,975,356.69	\$28,255,110.26	\$28,537,661.36	\$28,823,037.98
Compost Area Operations (years 0-87)	\$9,454,981.51	\$9,549,531.32	\$9,645,026.63	\$9,741,476.90	\$9,838,891.67	\$9,937,280.59	\$10,036,653.39	\$10,137,019.93	\$10,238,390.13	\$10,340,774.03	\$10,444,181.77
WPWMA Operational Costs (years 0-87)	\$19,662,264.22	\$19,858,886.86	\$20,057,475.73	\$20,258,050.48	\$20,460,630.99	\$20,665,237.30	\$20,871,889.67	\$21,080,608.57	\$21,291,414.65	\$21,504,328.80	\$21,719,372.09
Long Haul Trucking (years 27-87)	\$77,196,525.30	\$77,968,490.55	\$78,748,175.46	\$79,535,657.21	\$80,331,013.78	\$81,134,323.92	\$81,945,667.16	\$82,765,123.83	\$83,592,775.07	\$84,428,702.82	\$85,272,989.85
Post Closure Care Costs (years 27-56)											
Total Operating Cost Not Including MRF	\$136,107,214.17	\$137,468,286.31	\$138,842,969.18	\$140,231,398.87	\$141,633,712.86	\$143,050,049.98	\$144,480,550.48	\$145,925,355.99	\$147,384,609.55	\$148,858,455.64	\$150,347,040.20
Plan Concept 1											
Landfill Operations (years 0-86)	\$8,679,059.92	\$8,765,850.52	\$8,853,509.02	\$8,942,044.11	\$9,031,464.55	\$9,121,779.20	\$9,212,996.99	\$9,305,126.96	\$9,398,178.23	\$9,492,160.01	\$9,587,081.61
Public Area Operations (years 0-87)	\$3,943,573.13	\$3,983,008.86	\$4,022,838.95	\$4,063,067.34	\$4,103,698.01	\$4,144,734.99	\$4,186,182.34	\$4,228,044.17	\$4,270,324.61	\$4,313,027.86	\$4,356,158.13
C\&D Area Operations (years 0-87)	\$26,093,120.28	\$26,354,051.48	\$26,617,591.99	\$26,883,767.91	\$27,152,605.59	\$27,424,131.65	\$27,698,372.97	\$27,975,356.69	\$28,255,110.26	\$28,537,661.36	\$28,823,037.98
Compost Area Operations (years 0-87)	\$9,454,981.51	\$9,549,531.32	\$9,645,026.63	\$9,741,476.90	\$9,838,891.67	\$9,937,280.59	\$10,036,653.39	\$10,137,019.93	\$10,238,390.13	\$10,340,774.03	\$10,444,181.77
WPWMA Operational Costs (years 0-87)	\$22,080,905.77	\$22,301,714.83	\$22,524,731.97	\$22,749,979.29	\$22,977,479.09	\$23,207,253.88	\$23,439,326.42	\$23,673,719.68	\$23,910,456.88	\$24,149,561.45	\$24,391,057.06
Long Haul Trucking (year 87)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Post Closure Care Costs (year 87)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Total Operating Cost Not Including MRF	\$70,251,640.60	\$70,954,157.00	\$71,663,698.57	\$72,380,335.56	\$73,104,138.92	\$73,835,180.30	\$74,573,532.11	\$75,319,267.43	\$76,072,460.10	\$76,833,184.70	\$77,601,516.55
Plan Concept 2											
Landfill Operations (years 0-66)	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Public Area Operations (years 0-87)	\$3,700,322.88	\$3,737,326.11	\$3,774,699.37	\$3,812,446.36	\$3,850,570.82	\$3,889,076.53	\$3,927,967.30	\$3,967,246.97	\$4,006,919.44	\$4,046,988.63	\$4,087,458.52
C\&D Area Operations (years 0-87)	\$26,093,120.28	\$26,354,051.48	\$26,617,591.99	\$26,883,767.91	\$27,152,605.59	\$27,424,131.65	\$27,698,372.97	\$27,975,356.69	\$28,255,110.26	\$28,537,661.36	\$28,823,037.98
Compost Area Operations (years 0-87)	\$9,454,981.51	\$9,549,531.32	\$9,645,026.63	\$9,741,476.90	\$9,838,891.67	\$9,937,280.59	\$10,036,653.39	\$10,137,019.93	\$10,238,390.13	\$10,340,774.03	\$10,444,181.77
WPWMA Operational Costs (years 0-87)	\$20,468,478.07	\$20,673,162.85	\$20,879,894.48	\$21,088,693.42	\$21,299,580.35	\$21,512,576.16	\$21,727,701.92	\$21,944,978.94	\$22,164,428.73	\$22,386,073.02	\$22,609,933.75
Long Haul Trucking (year 67)	\$77,196,525.30	\$77,968,490.55	\$78,748,175.46	\$79,535,657.21	\$80,331,013.78	\$81,134,323.92	\$81,945,667.16	\$82,765,123.83	\$83,592,775.07	\$84,428,702.82	\$85,272,989.85
Post Closure Care Costs (year 67)	\$586,190.00	\$586,190.00	\$586,190.00	\$586,190.00	\$586,190.00	\$586,190.00	\$586,190.00	\$586,190.00	\$586,190.00	\$586,190.00	\$586,190.00
Total Operating Cost Not Including MRF	\$137,499,618.02	\$138,868,752.30	\$140,251,577.93	\$141,648,231.80	\$143,058,852.22	\$144,483,578.84	\$145,922,552.73	\$147,375,916.36	\$148,843,813.62	\$150,326,389.86	\$151,823,791.

Client: WPWMA
Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018
Worksheet: Summary Input for NPV_PC\# Sheets
Plan Concept: 0, 1, 2

	86	87	Remaining Useful Life/Liability
Year	2108	2109	2110
Plan Concept 0			
Landfill Operations (years 0-26)			
Public Area Operations (years 0-87)	\$4,128,333.11	\$4,169,616.44	
C\&D Area Operations (years 0-87)	\$29,111,268.36	\$29,402,381.04	
Compost Area Operations (years 0-87)	\$10,548,623.58	\$10,654,109.82	
WPWMA Operational Costs (years 0-87)	\$21,936,565.81	\$22,155,931.47	
Long Haul Trucking (years 27-87)	\$86,125,719.75	\$86,986,976.94	
Post Closure Care Costs (years 27-56)			
Total Operating Cost Not Including MRF	\$151,850,510.60	\$153,369,015.71	
Plan Concept 1			
Landfill Operations (years 0-86)	\$9,682,952.43	\$0.00	
Public Area Operations (years 0-87)	\$4,399,719.72	\$4,443,716.91	
C\&D Area Operations (years 0-87)	\$29,111,268.36	\$29,402,381.04	
Compost Area Operations (years 0-87)	\$10,548,623.58	\$10,654,109.82	
WPWMA Operational Costs (years 0-87)	\$24,634,967.63	\$24,881,317.31	
Long Haul Trucking (year 87)	\$0.00	\$86,986,976.94	
Post Closure Care Costs (year 87)	\$0.00	\$515,526.00	\$14,950,254.00
Total Operating Cost Not Including MRF	\$78,377,531.72	\$156,884,028.03	
Plan Concept 2			
Landfill Operations (years 0-66)	\$0.00	\$0.00	
Public Area Operations (years 0-87)	\$4,128,333.11	\$4,169,616.44	
C\&D Area Operations (years 0-87)	\$29,111,268.36	\$29,402,381.04	
Compost Area Operations (years 0-87)	\$10,548,623.58	\$10,654,109.82	
WPWMA Operational Costs (years 0-87)	\$22,836,033.08	\$23,064,393.41	
Long Haul Trucking (year 67)	\$86,125,719.75	\$86,986,976.94	
Post Closure Care Costs (year 67)	\$586,190.00	\$586,190.00	\$5,275,710.00
Total Operating Cost Not Including MRF	\$153,336,167.88	\$154,863,667.66	

Appendix 4B-1
Operational Cost Estimates Raw Backend Calculations

PLAN CONCEPT 0
Raw calculations only, refer to Summary for actual annual allocations
Year
Landill OPerations

osm Unit cost
Total Landilil Tonnage Excluding Tonnage Attibutable to Other Facilities
Total Operating Costs

	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%
	- 0.00%	${ }_{\text {a }}^{0.000 \%}$	- 0.00%		${ }^{\text {30.00\% }}$	${ }_{\text {coin }}^{0.000 \%}$	${ }^{0.000 \%}$	${ }_{\substack{0.000 \%}}^{0.000 \%}$	${ }_{\text {a }}^{0.00 \%}$	(0.00\%		${ }^{0.00 \%}$	${ }_{\text {coiol }}^{0.00 \% \%}$	${ }_{\text {coiol }}^{0.000 \%}$		${ }_{\text {coiol }}^{0.000 \%}$	${ }_{\text {coiol }}^{0.000 \%}$
58.34	s8. 34	58.34	S8.34	58.34	¢8,34	S8.34	s8.3	s8.34	S8.34	S8.34	58.34	58.34	s8.34	S8.34	s8.34	58.34	s8.34

Public Araa Operations

osm Unit cost
Total Tonnage Processed

	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%
	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	50.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%
				0.00													
${ }^{\text {s37. } 55}$	${ }_{577.55}$	${ }_{537.55}$	${ }_{57,55}$	${ }^{537.55}$	¢37.55	${ }_{57,55}$	${ }^{537.55}$	${ }_{537.55}$	${ }^{937.55}$	${ }^{937.55}$	${ }_{537.55}$	${ }_{537.55}$	${ }^{537.55}$	${ }^{537.55}$	${ }_{537.55}$	${ }^{537.55}$	55
17,207	17,57.28	17,943.79	18,34, 20	18,72.67	20,98.65	23,523.50	35,783.95	36,54,57	37,317.27	38,108.40	38,916.29	39,741.32	40,58.84	41,444.21	42,322.83	43,22.07	44,136.34
S646,038.46	\$659,734.48	S67,720.85	S688.003.73	\$702,589.41	\$787,74.24	s883,217.73	\$1,343,55.80	\$1,372,034.08	\$1,401,121.20	\$1,430,824.97	\$1,461,158.46	\$1,492,135.02	\$1,523,788.29	\$1,566.072.17	\$1,589,060.90	\$1,622,74.99	\$1,657,151.27

CzD Operations
 osm Unit cost
Total Tonnage Processed

Toal Operating Costs

	2.12\%	2.12\%	2.12\%	2.12\%
	${ }_{\text {a }}^{0.000 \%}$	${ }_{\text {a }}^{\text {a }}$		-
524.89	S24.89	\$24.89	${ }_{524.89}$	24. 89
${ }^{83,996}$	85,67.08	87,490.38	176,835.55	180,584.46
\$2,08, 179.75	\$2,132,499.16	\$2,177,657.08	\$4,401,480.49	54,994,791.87

 osm Unit cost

	2.12\%	2.12\%	2.12\%	2.12\%
	${ }^{0.000 \%}$	${ }^{0.00 \% \%}$	${ }^{0.00 \%}$	
S34.93	S34.93	834.93	${ }_{534.93}$	4.93
65,994	66,984.44	68,404.51	69,54.69	71,335.61
\$2,291,087.92	\$2,339,658.98	\$2,389,259.75	S2,439,912.06	S2,491,638.17

Total Tonnage Processed

$52,291,087.92$	$52,339,658.98$	$52,389,259.75$	$\$ 2,439,912.06$	$\$ 2,491,638.19$

WeWwaoperaions

Tonnage Based Growth Rate
\%o Adjustmentit or Operational C hange (increase by 3 staffin 2020, increase by 4 staffit 2027) \%A Ajustment tor Operaitional Change (nin)
osm Unit Cost

	$\begin{aligned} & 2.12 \% \\ & 0.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 2.12 \% \\ & 0.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{gathered} 2.12 \% \\ 1.503 \% \\ 0.00 \% \\ \hline \end{gathered}$	
59.84	ร9.84	S9.84	59.84	
456,561	466,239.80	476,14.09	557,761.24	569.585.78
44,492, 155.83	\$4,587,389.54	54,68,642.19	55,487.87.98	5,604,22.04

Total Operating Cosis

$54,42,155.83$	$54,587,389.54$	$54,684,642.19$	$55,487,879.98$	$55,604,23.04$	s

Total Operating Costs

	\$1.606.00	\$1,006.00	\$1,006.00	\$1,006.00	\$1,606.00	\$1,606.00	\$1,606.00	\$1,606.00	\$1,606.00	\$1,006.00	\$1,006.00	\$1,006.00	\$1.606.00	\$1.606.00			
148	148	148	148	148	148	148	148	148	148	148	148	148	148	${ }_{148}$			148
5237.688.00	s237.688.00	5237,688	37,680	5237,68.00	S237,688.00	237,688.00	5237,688.00	237,688.00	237,688.00	5237,688.00	S27,688.00	\$237,68.00					

Plan concept: 0
Raw calculations only, refer to Summary for actual annual allocations

Landililoperations

Tonnage Based Grownt Rate
\% Andistenmet or Operational
Othes
$\%$ Adjustrent tor operational Change (none)

Total Landfili Tonnage Excluding Tonnage Attributable to other Facilities

Total Operating Costs

Public Area Operations

osm Unit cost
Total Tonnage Processed

	212%	212%	212%	2.12%									212\%			
0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	${ }_{0}^{2.00 \%}$	${ }_{0}^{2.00 \%}$	${ }_{0}^{2.00 \%}$	${ }_{0}^{2.200 \%}$	${ }_{0}^{2.00 \%}$	${ }^{2.200 \%}$	0.00\%	${ }_{0}^{2.00 \%}$	0.00\%	0.00\%	0.00\%
0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	
${ }_{537.55}$	${ }_{537.55}$	${ }_{53.55}$	\$37.55	S37.55	S37.55	${ }_{53.55}$	S37.55	37.55	${ }_{537.55}$	37.55	537.55	537.55	37,5	37.55	537.5	537.55
45,072.03	46,027.56	47,003,34	47,999.81	49,017.41	50,056.58	117	52,201.47	53,30,15	54,438.28	55,992.33	56,70.93	57,974.47	59,203.53	60,458.65	61,740.37	2,357.77

 osm Unit cost
Total Tonnage Processed

Total operating Costs

Composing operations

osm Unit cost

2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	1.00\%	1.00\%
${ }^{0.00 \%}$	${ }_{\text {coin }}^{0.00 \%}$	${ }^{0.00 \%}$	${ }^{0.00 \%}$	come	年0.00\%	enome	- 0.00%	- 0.00%	- 0.00%	-0.00\%	-0.00\%	0.00\%	0.0.00\%	-0.00\%	0.0.0\%\%	(0.00\%	${ }^{0.000 \%}$
s24.89	\$24.89	\$24.89	24.89	\$24.89	\$24.89	\$24.89	\$24.89	\$24.89	S24.89	\$24.89	\$24.89	\$24.89	\$24.89	${ }_{524.89}$	S24.89	S24.89	S24.89

Total Tonnage Processed

Total Operating Costs

2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	1.00\%	
- ${ }_{\text {0.00\% }}^{0.00 \%}$	${ }^{0.00 \%}$	0.00\%	0.0.0\%\%	0.0.0\%\%	${ }^{0.00 \%}$	${ }_{\text {cose }}^{0.00 \%}$	${ }_{\text {cole }}^{0.00 \% \%}$	${ }^{0.00 \%}$	${ }_{\text {coiol }}^{0.00 \% \%}$	${ }^{0.00 \%}$		0.00\%	0.00\%	-0.00\%	- 0	0.0.00\%	0.0.0\%\%
\$34.93	\$34.93	\$34.93	S34.93	\$34.93	\$34.93	${ }_{534.93}$	S34.93	534.93	\$34.93	\$34.93	\$34.93	S34.93	\$34.93	\$34.93	\$34.93	${ }^{534.93}$	\$34.93
. 51	3.04	3.21	40.19	34,635.21	899.47	804.25	30.82	20.49	524.61	.94.53	933.65	51.27.41	213.24	\%,060.64	581,12	2776.	989.70

age Based	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2120	212\%	2.12\%	1.00\%	1.00\%
\% Adjustment for Operational Change (increase by 3 staff in 2020, increase by 4 staff in 2027) Other Adjustment if applicable (none)	${ }^{0.000 \%}$	- 0.00%	${ }^{0.00 \% \%}$	-	(0.00\%	(0.00\%	${ }^{0.00 \% \%}$	0.00\%	${ }^{0.00 \%}$	${ }^{0.00 \%}$	${ }^{0.00 \%}$	(0.00\%	${ }^{0.00 \%}$	0.0.00\%	0.0.0\%\%	-	0.0.0\%\%	俍0.00\%
osm Unit Cost	59.84	59.84	59.84	59.84	59.84	59.84	59.84	59.84	59.84	59.84	s9.84	59.84	59.84	59.84	59.84	59.34	59.84	s9.84

Ton

Ofistife Disposal and Long Haul Trucking

osm Unit cost
Total Tonnage Disposed

Total Operating Costs

Post Closure Care osm

osm Unit Cost (statst in year 27,31 years from 2018
Units (acers)
Total Operating Cosis

2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	1.00\%	1.00\%
S83.18	${ }^{583.18}$	${ }^{583.18}$	583.18	s83.18	${ }_{583.18}$	${ }_{883.18}$	S83.18	s83.18	${ }_{583.18}$	${ }^{\text {s83.18 }}$	s83.18	s83.18	${ }_{583.18}$	${ }_{\text {s83.18 }}$	${ }^{583.18}$	583.18	583.18
424,446.86	433,445.13	442,634.17	452,018.01	461,600.79	471,386.73	481,380.13	491,566.39	502,007.00	512,649.54	523,517.71	534,616.29	545,950.16	557,524.30	569,343,81	581,413.90	587,228.04	593,100.32

2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	${ }^{2.12 \%}$	2.12\%	1.00\%	1.00\%
\$1,006.00	\$1,006.00	\$1,606.00	\$1,606.00	\$1,006.00	\$1,006.00	\$1,006.00	\$1,006.00	\$1,006.00	\$1,606.00	\$1,606.00	\$1,006.00	\$1,006.00	\$1,006.00	\$1,006.00	\$1,00.00	\$1,00.00	\$1,606.00
148	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148

PLAN CONCEPT 0
Raw calculations only，refer to Summary for actual annual allocations
 Landifll Operations

Total Landfili Tonnage Excluding Tonnage Attributable to other Facilities
 Total Operating Costs

Public Area Operations

osm Unit Cost
Total Tonnage Processed

1．00\％																
0．00\％	0．00\％	0．00\％	0．00\％	0．00\％	0．00\％	0．00\％	0．00\％	0．00\％	0．00\％	0．00\％	－	－0．00\％	－	－0．00\％	0．00\％	0．000\％
\％											0．00\％		0．00\％			
537．55	${ }_{\text {S37．55 }}$	${ }_{\text {S37．55 }}$	${ }_{\text {s37．55 }}$	${ }_{537.55}$	${ }_{\text {S37．55 }}$	${ }_{\text {S37．55 }}$	${ }_{\text {s37．55 }}$	${ }^{537.55}$	${ }_{\text {s37．55 }}$	${ }_{\text {s37．55 }}$	\＄37．55	${ }^{537.55}$	${ }_{\text {S37．55 }}$	${ }_{\text {s37．55 }}$	${ }_{\text {s37．55 }}$	537．55
63，611．16	64，247．28	64，889．75	65，538．65	66，194．03	66，855．97	67，524．53	68，199．78	68，881．77	69，570．59	70，266．30	70，968．96	71，678．65	72，395．44		73，850．59	

 osm Unit cost
Totai Tonnage Processed

Total Operating Costs

Composing Operations

osm Unit cost

		， 1.00%	， 1.00%	（000\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％
${ }_{\text {coin }}^{0.000 \%}$	${ }_{0}^{0.000 \%}$	${ }_{\text {a }}^{0.00 \% \%}$	${ }_{\text {a }}^{0.00 \% \%}$	${ }_{0}^{0.00 \%}$	${ }_{\text {a }}^{0.00 \% \%}$	${ }^{0.000 \%}$	${ }_{0}^{0.000 \%}$	${ }_{\text {a }}^{0.00 \% \%}$	${ }_{\text {a }}^{0.00 \% \%}$	${ }_{\text {a }}^{0.000 \%}$	${ }_{\text {colo }}^{0.00 \% \%}$	${ }^{0.00 \%}$	${ }^{0.00 \%}$	${ }^{0.00 \% \%}$	${ }^{0.00 \%}$	${ }^{0.00 \%}$	－${ }_{\text {a }}^{0.00 \%}$
\＄34．93	\＄34．93	\＄34．93	\＄34．93	\＄34．93	\＄34．93	\＄34．93	${ }_{\text {S34．93 }}$	\＄34．93	\＄34．93	\＄34．93	\＄34．93	\＄34．93	${ }_{534.93}$	${ }_{\text {S34，93 }}$	s34．93	\＄34．93	\＄34．93
174，7919．60	176，466．80	178，231．47	180，013．78	181，813．92	183，632．06	185，468．38	187，323．06	189，196．29	191，088．26	192，999．14	194，929．13	196，878．42	198，847．20	200，835．68	202，844．03	204，872．47	206，921．20

Tolal Operating Costs

WrWMA Operations

 osm Unit cost

1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％		1．00\％	1．00\％	1．00\％	1．00\％	1．0\％	1．00\％	
${ }_{\text {coiol }}^{0.000 \%}$	${ }_{\text {a }}^{0.000 \%}$	${ }_{\text {coin }}^{\substack{0.00 \% \%}}$	${ }_{\text {coiol }}^{0.00 \% \%}$	0．0．0\％\％	－ 0.00%	${ }_{\text {coin }}^{0.000 \%}$	－ 0.00%	${ }_{\text {a }}^{0.00 \%}$	${ }_{\text {coin }}^{\substack{0.00 \% \%}}$	${ }_{\text {a }}^{0.00 \%}$	${ }_{\text {coin }}^{\substack{0.00 \% \%}}$	俍0．00\％	－${ }_{\text {0．00\％}}^{0.00 \%}$	俍0．00\％	${ }_{\text {a }}^{0.00 \%}$	俍0．00\％	0．0．00\％
s9．84	ร9．84	s9．84	s9．84	59．84	84	s9． 84	s9．84	s9．84	s9．84	s9． 84	s9．84	59.84	S9．84	99.84	s9．84	59.84	9．84
1，289．842．87								75.00	88.15	88.97	33．86						566．63

Total Operating Costs

Offisto Dissosal and Long Haul Tricking

osm Unit Cost
Total Tonnage Disposed
Total Operating Costs

1．00\％	100\％	100\％	100\％	100\％	100\％	100\％	100\％	100\％	100\％	100\％	100\％	100\％	100\％	100\％	100\％		
S83．18	s83，18	S83．18	S83．18	S83．18	583.18	583.18	S83．18	S83．18	s83．18	s83．18	s83．18	s83．18	${ }^{583.18}$	583.18	318	318	s83．18
599，031．33	605．021．64	611.071 .86	617，182．57	623，354．40	629．587．94	635．883．82	${ }_{642}$ 242．66	${ }_{648.665 .09}$	655，151．74	661，703．26	668，320．29	675．003．49	6881，75．53	688.571 .06	695．456．77	702.411 .34	709．435．45
1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％
\＄1，606．00	\＄1，006．00	\＄1，606．00	\＄1，606．00	\＄1，606．00	\＄1，606．00	\＄1，006．00	\＄1，006．00	\＄1，606．00	\＄1，00．00	\＄1，00．00	\＄1，606．00	\＄1，006．00	\＄1，606．00	\＄1，006．00	\＄1，606．00	\＄1，006．00	\＄1，606．00
148	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148

Tonnage Based Growth Rate（not used）
osm Unit cost（stants in year 27， 31 years trom 2018）
Units saceses）
Total Operating Costs

PLAN CONCEPT 0
Raw calculations only, refer to Summary for actual annual allocations

Landiflloperations

\% Adistment for Operational Change (none)

Total Landfill Tonnage Excluding Tonnage Attibuutale to other Facilities

Total Operating Costs

public Area Operations
osm Unit Cost
Totat Tonnage Processed

1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%
	(0.0.0\%\%				-	-	-					-				隹	
\$37.5	${ }_{537.55}$	\$37.55	\$37.55	\$37.55	s37.5	${ }^{53,55}$	537	\$37.55	S37.55	${ }_{537.55}$	S37.55	S37.55	S37.55	${ }_{837.55}$	837.55	${ }_{537.55}$. 55
76,089.33	76.849.22	77,617.71	78,393.89	79,177.82	79,969.60	80,769.30	81,576.99	82,392.76	83,216.69	84,048.86	84,889,34	85,733.24	86,595.62	87,461.58	88,336.19	89,219.55	.11.75
2,85,826.74	2,88,395.01	14,24.96	4, 3 ,391.45	2,82, 36	2,55.62	232,59.15	004.94	8,533.99	, 69.33	55,714.03	S.187,27.17	5219,143.88	251,335.32	S283, 848.67	316,687.16	349,854.03	S $88,352.57$

CED Operations

 osm Unit cost
Total Tonnage Processed

Total Operating Costs

Composing operations

osm Unit cost

1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00	1.00\%	1.00\%	1.0\%	1.00\%	1.00\%
${ }^{\text {a }}$	${ }_{0}^{0.00 \% \%}$	${ }_{0}^{0.00 \% \%}$	${ }^{0.000 \%}$	0.00\%	${ }^{0.000 \%}$	${ }_{0}^{0.000 \%}$	${ }_{0}^{0.00 \% \%}$	${ }_{0}^{0.00 \% \%}$	${ }^{0.000 \%}$	${ }_{0}^{0.00 \% \%}$	${ }^{0.000 \%}$	${ }_{0}^{0.00 \% \%}$	${ }^{0.000 \%}$	${ }^{0.000 \%}$	${ }_{0}^{0.00 \% \%}$	${ }_{0}^{0.00 \% \%}$

Total Tonnage Processed
Total Operating Cosis
 WeWwA Operations

\%A Adistment tor operational Change (increase by 3 staff in 2 2020, increase by 4 staff in 2027) osm Unit cost

age Inbund

Total Operating Costs

Ofiste Disposal and Long Haul Truckna

osm Unit Cost
Total Tonnage Disposed
Total Operating Costs
Post Closure Care osm

Post Closurre Care O\&M

1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%
- 0.00%	${ }_{\text {coin }}^{\substack{0.00 \% \%}}$	0.0.0\%	${ }_{\text {coiol }}^{\substack{0.00 \% \%}}$	${ }_{\text {cose }}^{0.00 \% \%}$	come	${ }_{\text {cose }}^{0.00 \% \%}$	come	${ }_{\text {coiol }}^{\substack{0.00 \% \%}}$	${ }_{\text {coiol }}^{0.00 \%}$	(0.00\%	${ }_{\text {coiol }}^{0.00 \%}$	${ }_{\text {coion }}^{0.00 \%}$	${ }_{\text {coin }}^{\substack{0.00 \% \%}}$	0.0.0\%\%			
s9, 84	59.84	59.84	s9. 84	s9. 84	59. 84	59. 84	s9. 84	59. 84	59.84	59.84	s9.84	59.84	59.84	59.84	59.84	59.84	99.84

O\&M Unit Cost (starts in year 27,31 years from 2018)
Units (acers)
Total Operating Costs

1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%	1.00%

PLAN CONCEPT 0

Raw calculations only, refer to Summary for actual annual allocations

${ }^{1.00 \%}$	$\underset{\substack{1.000 \\ 0.005}}{10}$	$\begin{gathered} \text { Doon } \\ \text { Noon } \end{gathered}$	$\begin{gathered} \text { anow } \\ \text { nope } \end{gathered}$	$\begin{gathered} \text { anow } \\ \text { Noon } \end{gathered}$	Boon	$\begin{gathered} 1.00 \% \\ 0.000 \\ 0.000 \end{gathered}$		$\begin{gathered} 1.009 \\ 0.00 \% \\ 0.000 \end{gathered}$		${ }^{\substack{1.00 \% \\ 0.00 \%}}$	${ }_{\substack{\text { a }}}^{1.00 \%}$,	${ }^{\text {a }}$,	$\begin{gathered} 1.00 \% \\ 0.000 \\ 0.002 \end{gathered}$	coin

Total Operating Costs

Public Area Operations

osm Unit Cost
Total Tonnage Processed

li.	-	${ }^{1.00 \%}$	-	-	-	-	-	-	-		-		-		-		
0.00\%	0.00\%	${ }^{\text {0.00\% }}$	0.00\%	0.00\%	0.00\%	0.00\%	${ }^{\text {0.00\% }}$	0.00\%	${ }^{\text {0.00\% }}$	0.00\%		0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	
\$37.55	537.55	S37.55	\$37.55	S37.55	${ }_{537.55}$	${ }_{537.55}$	${ }_{537.55}$	S37.55	${ }_{937.55}$	${ }_{537.55}$	S37.55	S37.55	${ }_{537.55}$	\$37.55	${ }_{537.55}$	S37.55	55
91,012.87	91,923.00	92,842.23	93,770.65	94,70.35	95,655.44	96,61..99	97,57..11	98,553.39	99,539.43	100,544.83	101,540.17	102,55.58	10,581.13	104,616.94	105,663.11	106,79.74	107,786.94
s,417,186.09	s3,45,.357.96	\$3,485,871.54	53,520,730.25	\$3,55,937.55	53,59,496.93	53,627.411.90	\$3,663,686.02	\$3,700,322	\$3,737,326.11	53,774,699.37	\$3,812,446.36	53,850,570.82	\$3,889,076.53	s3,927,967.30	\$3,967,246.97	54,006,999.44	\$4,046,988.63

Czdoperations
 osm Unit cost

1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	10\%	1.00\%	10\%	
${ }^{0.000 \%}$	come	come	${ }_{\text {a }}^{0.00 \%}$	${ }_{\text {a }}^{0.00 \%}$	${ }_{\text {a }}^{0.000 \%}$	${ }_{\text {a }}^{0.000 \%}$	${ }_{\text {a }}^{0.00 \% \%}$	${ }_{\text {a }}^{0.00 \% \%}$	${ }_{\text {a }}^{0.00 \% \%}$	- 0.00%	${ }_{\text {cose }}^{0.00 \% \%}$	-	${ }_{0}^{0.00 \% \%}$	${ }^{0.00 \% \%}$	${ }^{0.00 \% \%}$	${ }_{\text {a }}^{0.00 \% \%}$	(0.00\%
\$24.89	\$24.89	\$24.89	524.89	524.89	${ }_{524.89}$	${ }_{524.89}$	\$24.89	524.89	S24.89	\$24.89	524.89	524.89	\$24.89	${ }_{524.89}$	S24.89	S24.89	24.89
968,112.47	977,793.59	987,57.53	997,447.24	1,07,421.72	1,07, 495.93	1,027,67.89	1,037,97.60	1,048,327.08	1,058,810.35	1,069,398.45	1,080.092.44	1,090,893.36	1,101,022.29	1,112.820.32	1,123,988.52	1,135,18.01	1,146,539.89

Total Tonnage Processed

Total Operating Costs

Tonnage Based Growth Rate
\%oAdjustment or operational Change (30% increase in year 0)
$\%$ \% Adisument for Operational C Change (ex)
osm Unit cost

Total Tonnage Processed

WeWWAOPerations

Tonnage Based Growth Rate
OoAdjustment Io O Oerational Change (increase by 3 staff in 2020, increase by 4 staff in 2027)
\%A Adjustment tor Operational Change (nercease by 3 staffif 20200 in increase by 4 staffin 2027)
osm Unit cost

Totereranc

Offitio Disposala and Long Haul Trucking

osm Unit Cost
Total Tonnage Disposed
Total Operating Costs
Post Closure Care osm \longrightarrow

Post Closurre Care osm

1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	100\%	1.00\%
\$83.18	S83.18	S83.18	s83.18	s83.18	s83.18	\$83.18	S83.18	583.18	S83.18	s83.18	s83.18	s83.18	${ }_{583.18}$	s83.18	s83.18	s83.18	${ }^{583} 18$
857,075.32	865,646.07	874,302.53	883,045.56	891,876.02	900,794.78	909,802.72	918,900.75	928,089.76	97,370.66	996,744.36	956,211.81	966,773.92	975,431.66	985,185.98	995,037.84	1,004,988.22	1,015,038.10

OsM Unit Cost (stants in year 27,31 years from 2018)
Units (acres)

1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	10\%	1.0\%	1.00\%	1.00\%	1.00\%	1.0\%	\%	10\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%
\$1,006.00	\$1,006.00	\$1,006.00	\$1,006.00	\$1,006.00	\$1,606.00	\$1,006.00	\$1,006.00	\$1,606.00	\$1,606.00	\$1,606.00	\$1,606.00	\$1,00.00	\$1,006.00	\$1,006.00	\$1,006.00	\$1,006.00	8,600.00
148	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148	148

Worksheet: o\&
Plan Concept: 0

PLAN CONCEPT 0

Public Area Operations

osm Unit Cost
Total Tonnage Processed

1.00%	1.00\%	1.00\%
${ }^{0.00 \%}$	-	${ }_{\text {a }}^{0.000 \%}$
53.55	537.55	537.55
108,864.81	109,953.46	111,052.99
S4,087,45.52	\$4,128,333.11	\$4,169,616.44

Ceso Operations

osm Unit Cost

1.00\%	$\begin{aligned} & \text { 0.00\% } \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & \text { 1.00\% } \\ & 0.00 \end{aligned}$
S24.89	${ }_{524} 89$	524.89

Total Tonnage Processed

\$28,823,037.98	s29,111,268.36	$\$ 29,402,31.04$

Total Operating Costs

$1.0 \% \%$	$\begin{array}{l}1.0 \% \% \\ 0.00 \% \\ 0.00 \% \\ 0.00 \%\end{array}$	$\begin{array}{l}1.00 \% \\ 0.00 \% \\ 0.00 \% \\ 0.00 \%\end{array}$

Tonnage Based Grown Rate	\%	1.00\%	1.00\%
\% Adjustment for Operational Change (30\% increase in year 0) Other \% Adjustment if applicable (none)	0.00\%	0.00\%	${ }_{\text {coiol }}^{0.00 \% \%}$
osm Unit Cost	534.93	\$34.93	\$34.93
Total Tonnage Processed	299,016.96	007	5,027.20

O\&M Unit Cost

299006.96	302,07.13	$\begin{array}{l}\text { 305,027.20 }\end{array}$

Total Operating Costs
\$10,444,181.77 \$10,548,623.58 S10,654,109.82

1.00%	1.00%	1.00%
583.18	583.18	583.18

Tonnage Based Growh Rate
osm Unit Cost

Total Tonnage Disposed

Post Closure Care okm
 Tonage Based Growt Rate (not usea)

OsM Unit Cost (stants in y year 27, 31 years from 2018)
Uns (Aares)
$\begin{array}{lllll} & \text { s237,68.00 } & \text { s237,68.00 } & \text { S237,688.00 }\end{array}$

Client: wpwna

Plan Concept: 1
PLAN CONCEPT 1
Raw calculations only, refer to Summary for actual annual allocations

Raw calculations only, refer to Summary for actual annual allocations	-5	-4	-3	-2		0	1	2	3	4	5	6	${ }^{7}$	${ }^{8}$	9	10	11	12
Yras	207	2018	2019		2021	202		${ }^{2024}$	2025	${ }^{2026}$	2027		2029	3s0		2032		2084
Landifloperations																		
		(entin\%	(e.1.2\%	(2.12\%			(2.12\%	(e.1.2\%	(enter	$\underbrace{2.12 \%}$	(enter	,		$\underbrace{\substack{2.12 \% \\ 0.00 \%}}_{\text {a }}$	(entin\%		,	
Oher \% Adiusment, fapplicabe (35\%\% inceasse in Year o)																		
osm Unit cost		s8.34	s8,34	58.34	58,34	S8.34	${ }^{8.34}$	S8.34	S8,34	S8.34	58.34							
Toat Landifll Tonnage Excluding Tonnage Attiruabele to other Facilities	24,3,79	248,232,27	25,494.80	25,868,89	264,356.91	362,486.19	370,170.90	378,018.52	386,032.52	394,216,41	402,573.79	411,108.36	491,823.86	428,724,12	437,813.07	447,094.71	456,57.12	466,252.47
Toual Operating Cosis	\$2.20, 382.93	\$2,09, 34225	S2,13,212.30	\$2,158.012.40	\$2,203,7627	53,021,798.82	s3,085,860.95	53,15, 281.21	\$3,278,088.37	\$3,26,311.84	53,35.981.65	53,427,128.46	53,499,783.59	\$3,573,99900	\$3,699,747.35	83,727,12200	53,006,136.98	53,886,827.09
Public Arao perations																		

Puble Area Operations

 osm Unit cost

osM Unit cost

		${ }_{0}^{2.012 \%}$	2.12% 0.00%	$\begin{gathered} 2.1290 \\ 0.009 \end{gathered}$	$\begin{gathered} 2.12 \% \\ 0.00 \% \end{gathered}$	2.129% 0.00%	$\begin{gathered} 2.12 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 2.12 \% \\ 0.00 \% \end{gathered}$	coivo	2.12% 0.00%	2.12% 0.00%	2.12% 0.00%	$\begin{gathered} 2.12 \% \\ 0.00 \% \end{gathered}$	2.12% 0.00%	2.12% 0.00%	$\begin{gathered} 2.12 \% \\ 0.00 \% \end{gathered}$	
${ }^{537.55}$	${ }_{3} 37.55$	37.55	${ }^{37.55}$	S37.55	${ }^{537.55}$	${ }^{537.55}$	${ }_{537.55}$	${ }_{837.55}$	${ }_{537.55}$	${ }^{537.55}$	s37.55	\$37.55	${ }^{537.55}$	${ }_{537.55}$	\$37.55	${ }^{\text {\$37.55 }}$. 55
7,207	7,571.28	1993.79	18,324.20	${ }^{8,7712.67}$	2.980.65	.425	2.879.65	24,531.1	3,770.42	40.613.55	1,474.5	2,353	3,251.73	4,168.66	5,105.03	6,066.26	7,037.76
S646,038.46	S659,734.48	5673,720.85	5688.003.73	8702,589.41	787,743.24	A43.	7.60	106.11	3,27.52	51,52, 8,83.94	S1,5	1,590,224.36	\$1,62,937.12	364.59	51.9	1,72,942,58	08.38
	2.12\%	2.12\%		2.12\%			2.12\%					2.12\%	2.12\%				
												come0.00% 0.00%		come0.00% 0.00%	come0.00% 0.00%		come0.00% 0.00%
	${ }^{24.89}$	${ }_{524.89}$	${ }_{524.89}$	${ }_{524.89}$	${ }^{524.89}$	${ }^{524.89}$	${ }_{524.89}$	${ }^{524.89}$	S24.89	${ }_{524,89}$	${ }_{524.89}$	\$24.89	\$24.89	S24.89	\$24.89	${ }_{524.89}$	24.89
${ }^{83,986}$	85,674.08	90.38	176,83.55	180,584,46	364,997.31	372,733.25	380,637.24	388,706.75	396,947.33	405,36262	11,956.30	422,732.18	431,694.10	400,846.02	450,091.95	459,736.02	469,482.42
82,088,199.75	S2,132,499.16	S2,177,657.08	S4,401,48,49	54,494,791.87	59,084, 873.34	59,277,472.65	s9,474,155.07	59,67,007.16	59,880,117.31	\$10,089,575.80	\$10,303,474.81	\$1,.,21,908.47	.74,9972.93	50,927.76.3	1,205,389.00	442,943,25	\$11,685,53, 65
				2.12\%													
	0.00\%	0.00\%	0.00\%	0.00\%	30.00\%	0.00\%	${ }^{0.00 \%}$	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%	0.00\%		0.00\%	0.00\%	0.00\%
	534.93	S34.93	${ }^{534.93}$	S4.93	${ }^{53.93}$	\$34.93	${ }_{534.93}$	${ }_{534.93}$	${ }^{53493}$	${ }_{534.93}$	\$34.93	${ }^{53493}$	\$34.93	\$34.93	S34.93	${ }^{33493}$	S34.93
6,594	58844	004.51	8854.69	,33.61	248.61	244.68	287.11	370.79	102.498.65	671.6	6,890.6	56.75	.470.87	113,834.05	116,247,33	118,71.78	12,228,47
\$2,29,087.92	\$2,339,659.98	\$2,38	S2439,912.	\$2,491.638	.952	3,361,74	3,433,010	3,505,	3,580,113.28	53,656,011.68	53,733,519	53,812	5,893,498.3	33.97	S4,06,332	\$4,146,411	S4,23, 315

${ }^{\text {Tolal Tonnage Processe }}$

| | |
| :--- | :--- | :--- |
| $1,087,92$ | 52,3 |

CexD operations

osm Unit cost
Total Tonnage Processed

	$\begin{gathered} 2.122 \% \\ 0.00 \% \end{gathered}$	2.12% 0.00%	$\begin{gathered} 2.12 \% \\ 1.0 .03 \% \\ \hline \end{gathered}$	$\begin{aligned} & \text { o. } 1.20 \% \\ & 0.00 \% \end{aligned}$	$\begin{gathered} 2.122 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 2.12 \% \\ 0.00 \% \end{gathered}$	$\begin{aligned} & 2.122 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 2.1226 \\ & 0.00 \% \end{aligned}$	$\begin{gathered} 2.122 \\ 0.00 \% \end{gathered}$	$\begin{gathered} 2,12 \% \\ 35006 \\ \hline 0.0 \end{gathered}$	$\begin{aligned} & 2.1220 \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 2.12 \% \\ & 0.00 \% \end{aligned}$	$\begin{gathered} 2.122 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 2.12 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 2.12 \% \\ 0.00 \% \end{gathered}$	$\begin{aligned} & 2.122 \% \\ & 0.00 \% \end{aligned}$	(en
59.84	59.84	59.84	59.84	5984	59.84	59.84	59.84	99.94	59.84	59.84	59.84	59.84	59.84	59.84	59.84	5984	S9.84
${ }^{456.561}$	466.239 .80	476,124.99	557,761.24	569.565.78	581,661.00	593,922.21	60,584,8	619,444,44	632,57.	87,775.7	\%6,172	904,959.44	924,144.58	943,736,44	963,743.66	984,175	1,005
S4,492,155.83	\$4,57, 38.94	S4,684,642.19	55,887,79.98	55,604,23, 04	55,723,032.56	55.84, 300.85	5,.988,261.30	S6,094,788.44	s6,22,997.96	58,58,14999	S8,790,156.68	S,904,004.85	59,092,79975	s9,285,564.47	59,482,38984	59,68,416.51	59,888,704.94
	2.12	12\%	2.12\%	2.12\%	2.12\%	2.12\%	.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	212\%	2.12\%	2.12\%	2.2\%	2.12\%
S83.18	583.18	S83.18	\$83.18	${ }^{583.18}$	${ }^{88} 3.18$	s83.18	83,18	83,18	58.18	s83,	\$83.18	583,18	583.18	S83.18	${ }_{\text {883,18 }}$	s83.18	583.1
200,957	297,125	424.34	309,956.94	316,42	323,134.14	329,98	336,980.25	34,	351,419,67	358,869	$366,47$.	374,247.13	2,181	390,283.41	398,557.42	407,006.84	415,635.
201	S24,741,247.33	\$25, 33, 189.38	\$25,773.23.99	\$22,319,631.66	S22,87, 607 85	S27,47,413,14	S22,029,298.30	28.623,599.42	S29,2,23,38.03	522,850,021.20	S30,482,841.65	S3, 129,077.89	53,7,79,014.34	S32.462,941.44	53, 15, 15	53, 55,960	s3, 571, 664.26

Ofisite Disposslancllong Haul Trickng
Tomage Based Growt Rate
Tolat Tonnage isposed
Total Operating Costs
Post Clossire Carao osM
O8m Unit Cost (satars in year 87,91 years trom 2018)
Units (aceres)
Tolal Operating Costs

	2, ${ }_{\text {2.12\% }}^{\text {0.0\% }}$	$\begin{aligned} & 2.122 \% \\ & 0.00 \% \end{aligned}$	$\begin{array}{r} 2.12 \% \\ 15.03 \% \end{array}$	$\underbrace{2.10 \% \%}_{0}$			2.1.2\%		-	${ }_{\text {2 }}^{2.29 \%}$		${ }_{\text {coser }}^{\text {2.12\% }}$				(2.12\%	c.and
	0.00\%	0.00\%							0.00\%					0.00\%			
59.84	59.84	59.84	59.84	59.84	59.84	84	84	9,84	9, 84	${ }_{59} 984$	s9.84	84	59.84	84	${ }^{59.84}$	s9.84	59.84
46,561	466.239 .80	476,124.09	557,761.24	56,.58.78	581,661.00	593,99221	60,.54, 8	19,444,44	632,57.67	867,775.74	88,172.58	90,959,4	24,44.5.5	943,736.4	$963,74.6$	984,175.02	1.005,039
\$4,492,155.83	\$4,58,398.54	S4,684,642.19	59,487,879.98	55,60,223.04	55,723,03256	\$5.84, 360.35	\$5,96,261.30	56,09,788.44	5,23,997.96	s8,538,14991	s8,799,158.68	\$8,94,004.85	s9,02,769.75	59,285,56.47	\$9,48,289.94	s9.63,416.51	59,888,704.94
	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2\%	2.12\%	2.12\%	2.12\%
\$83.18	${ }^{583.18}$	S83.18	S83.18	${ }_{583} 81$	S83,18	S83.18	S83.18	583.18	583.	ร83,	\$83.18	58.18	583.18	583.18	${ }_{\text {s } 8.3 .18}$	S83.18	s83.13
290,95	25.29	303,424.34	09,966.94	316,425.	323,134.14	329,984.58	336,980.25	344,124.24	351,419.67	358,869.77	366,477.81	374,247.13	382,181.17	330,283.41	398.557.42	4077.006 .84	415,635.39
\$24,201,18227	S24,714,247	5,238,189,38	25,773.38.99	26,319,631	\$2,.877,607 85	s27,47,413.14	528,02,298.30	528,623,519.42	529,230,338.03	529,550,021.20	s30,482,841.65	\$31,129,077.89	531,79,0014.34	S32,46,994.44	533,15,15	533,85,900	\$3, 577, 664.26

Toalil Operating Costs

Composing operations

Ohter \% Adjustrment, frapicicale (fonene)
osm Unit cost

Client: MpumA Proiect: Renewat

Proiect: Renewable Place- Waste Action Pla

Plan Concept: 1
PLAN CONCEPT 1
Raw calculations only, refer to Summary for actual annual allocations

	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28		$29 \quad 30$
Year								2042		${ }^{2044}$	2045		${ }^{2047}$	${ }^{2043}$				
Landinloperations																		
onnage Based Growth Rate \% Adjustment for Operational Change (none) Other \% Adjustment, if applicable (35% increase in Year 0)	$\begin{aligned} & 2.12 \% \\ & 0.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 2.12 \% \\ & 0.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{gathered} 2.02 \% \\ 0.000 \\ 0.00 \% \end{gathered}$	$\begin{aligned} & 2.20 \% \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 2.12 \% \\ & 0.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 2.20 \% \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 2.12 \% \\ & 0.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 2.12 \% \\ & 0.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 2.20 \% \\ & \text { o.000 } \\ & 0.000 \end{aligned}$	$\begin{gathered} 212 \% \\ 0.01 \% \\ 0.0 \end{gathered}$	$\begin{aligned} & 212 \% \\ & 0.020 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 2.20 \% \\ & 0.000 \\ & 0.000 \end{aligned}$	$\begin{aligned} & 2.12 \% \\ & 0.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{gathered} 2.10 \% \\ 0.000 \\ 0.00 \% \end{gathered}$	$\begin{aligned} & 2.12 \% \\ & 0.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 2.12 \% \\ & 0.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \\ & 0.00 \% \end{aligned}$	
osm Unit cost	s8.34	s8,34	s8,34	s8,34	s8,34	s8,34	s8.34	s8,34	s8,34	s8.34	s8,34	s8.34	ร8,34	s8,34	s8.34	s8,34	s8.34	5,34 58,34
Total Landifill onnage Excluding Tommage Atributable to onter failities	476,137.02	486,231.13	490,532.23	507,065.60	517,815.65	528,793,	540,003	551,451.84	568, 142.62	575,081.23	587,72.97	$599,73.11$	${ }_{612,4372}$	${ }^{625,420.96}$	${ }^{63,679.88}$	652219.99	658,74209	09 665,3

Tolal Operating Cosis

Pubice Arae Operations

 osm Unit cost
 oxM Unit Cos

${ }^{2} 12 \%$	${ }^{2.12 \%}$	${ }_{2}^{2.12 \%}$	${ }^{2} 120 \%$	${ }^{2.120 \%}$	${ }^{2.12 \%}$	${ }^{2.12 \%}$	${ }^{2.12 \%}$	${ }^{212 \% \%}$	${ }^{2.12 \%}$	${ }^{2.12 \%}$	${ }^{2.12 \%}$	${ }^{2.12 \%}$	${ }^{2.12 \%}$	2.12\%	${ }^{2.12 \%}$	1.0\%	1.0\%
(0.0\%\%					${ }_{\text {coin }}^{0.00 \% \%}$	(0.00\%	年0.00\%	${ }_{\text {coin }}^{0.00 \% \%}$	(0.00\%	(0.00\%	${ }_{\text {a }}^{0.00 \% \%}$	${ }_{\text {col }}^{0.00 \% \%}$	(0.00\%	${ }^{0.00 \% \%}$	${ }^{0.00 \% \%}$	${ }_{\text {coin }}^{\substack{0.00 \% \%}}$	
S37.5	537.55	S37.55	937.55	${ }^{937.55}$	${ }_{\text {37.55 }}$	537.55	${ }^{537.55}$	S37.55	S37.55	¢37.55	S37,55	${ }^{537.55}$	S37.55	S37,55	937.55	S37,55	537.55
48,034.96	49,053.30	50,093.23	51,155.20	52.23 .69	53,377.18	54,478.14	55,63.07	56,81249	58,016	59,246.	60,502	61,785	63,095	64,433	65,799	66,45	67,121.59

CEDOPerations

 osm Unit cost
O\&M Unit Cost
Total Tonnage Processea

		$\underbrace{\substack{\text { a }}}_{\substack{2.12 \% \\ 0.00 \%}}$	2.12\%			2.12\%	2.12% 0.00% 0.0		2.12\%		2.12\%	2.12\%	${ }_{\text {2 }}^{2.129 \%}$	2.12\%	2.12\%	(1.00\%	1.00\%
${ }^{0.000 \%}$		${ }_{\text {a }}$	${ }_{0}^{0.000 \%}$		${ }^{0.000 \%}$	${ }_{\text {0,00\% }}$	0.00\%	${ }^{0.000 \%}$			${ }^{0.000 \%}$	${ }_{\text {0, }}$	何	${ }^{0.000 \%}$		${ }_{\text {cose }}^{0.00 \% \%}$	${ }^{0.000 \%}$
S22,89	\$24.89	524.89	S24.89	\$24.89	\$24.89	S22.89	\$24.89	\$24.89	S24.89	S24.89	\$24.89	S24.89	S24.89	\$24.89	S24,89	\$24.89	S24.89

Toalil Operating Costs

Tolal Operating Costs

wewwacoperions

osm Unit Cost
 Total Tomnage Inbound
 Offitio Disposal and Long Haul ruckin

2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	1.00\%
\$83.18	S83.18	¢83. 18	S83.18	s83,18	s83.18	s83.18	${ }_{\text {s83.18 }}$	${ }_{\text {s83. } 18}$	s83.18	${ }_{583.18}$	\$83.18	${ }_{\text {s83.18 }}$	${ }_{\text {s83.18 }}$	S83.18	¢83. 18	s83.18
424,446.86	433,455,13	442,234,17	452.018.01	461,000.79	471,386.73	481,380.13	491,586.39	502,007.00	512,699.54	52, 517.71	534,616.29	54,5950.16	557, 24.30	569,34.81	581,413.30	587,228.04

Toulona

2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2\%\%	2.12\%	2.12\%	2.12\%	${ }^{2.12 \%}$	2.12\%	${ }^{2.12 \%}$	${ }^{2.12 \%}$	1.00\%	1.00\%
81,006.00	81,000.00	\$1,006.00	\$1,006.00	\$1,000.00	\$1,006.00	\$1,000.00	\$1,006.00	\$1,006.00	\$1,000.00	\$1,006.00	\$1,006.00	\$1,006.00	\$1,006.00	\$1,000.00	\$1,006.00	\$1,006.00	\$1,006,00
321	321	321	321	321	321	321	321	321	321	321	321	321	321	321	${ }^{321}$	321	321

Client：MpumA Proiect：Renewat

Proiect：Renewable Place－Waste Action Pla

Plan Concept： 1
PLAN CONCEPT 1
Raw calculations only，refer to Summary for actual annual allocations

Total Operating Cossts

Puble Area Operations

 osm Unit cost

$\xrightarrow{1.00 \%}$			－		1.00%	1．00\％	1.00%	1．00\％	1．00\％	1.00%	1．00\％	${ }^{1.00 \%}$	1．00\％	1．00\％	1．00\％	1．0\％\％	1．00\％
（0．0．0\％	（0．0．0\％	－	－			－	（0．00\％	（0．00\％	－	come		－		（0．00\％	－		（0．00\％
S37．55	${ }_{537.55}$	${ }_{\text {S37．55 }}$	\＄37．55	\＄37．55	\＄37．55	\＄37．55	\＄37．55	${ }_{377.55}$	${ }_{537.55}$	\＄37．55	937．55	${ }_{\text {S37．55 }}$	${ }_{377.55}$	S37．55	\＄37．75	\＄37．55	${ }_{537.55}$
29281	8．470．74	9，155．44	9，847．00	0．545．47	17．25．92	7，963．43	2．683．07	8，409．90	44，439．99	， 885.43	63429	7，390．63	7，145．54	7，926．08	8，705．34		

Total Tonnage Processed

CED operations

osm Unit cost
Total Tonnage Processel

Total Operating Costs

osm Unit cost

1．00\％	1．00\％	1．0\％	1．00\％	1．0\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％
						（0．00\％				年0．00\％				年0．00\％			
93	534.93	53.93	\＄34．93	S34．93	\＄34．93	\＄34．93	54.93	\＄34．93	534.93	534.93	S34．93	\＄34．93	534.93	\＄34．93	\＄34．93	\＄34．93	${ }_{534.93}$
174，719．60	176，466．80	178，231．47	180，013．78	181，813．92	183，63206	185，668．38	187，323．06	189，196．29	191，088．26	192，999．14	194，929．13	196，87．42	198.847 .20	200，835．68	$202,844.03$	204，872．47	200，921

Toala Operating Costs

osm Unit cost

1．00\％	1．00\％	1．00\％	1．00\％	1．0\％	1．00\％	1．00\％	1．0\％\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．0\％
隹 0.00%	come 0.000%	（0．00\％	come	年0．00\％	come	come	come	（0．00\％	${ }_{0}^{0.00 \% \%}$	${ }_{0}^{0.00 \% \%}$	${ }^{0.00 \% \%}$	${ }_{0}^{0.00 \% \%}$	come	${ }_{0}^{0.00 \% \%}$	${ }_{0}^{0.00 \% \%}$	隹0．00\％	come 0
59.84	s9984	s9．94	s9．84	s9，94	59984	59.84	s9．94	59.84	s9，84	59.84	s9，84	59，84	s9，94	s9，94	59.84	59.84	59.84
．448，509．55	1，462，990．61	1．477，20．52	1，42，396．72	1，507，320．69	1，522，393．89	1，57，．617．83	1，552，99401	1．56，523．95	1，584，20．19	1．600．051．28	1．616，051．30	1，632，212．31	1，684，534．4．	1．66，019．73	1．681，669	1，988，486．68	5．47．55

 Offsite Dispossal and Long Haul Truckin

1．00\％	1．00\％	1．00\％	1．00\％	1．0\％\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	1．00\％	100\％	
S83．18	\＄83．18	ร83．18	s83．18	\＄83．18	s83．	S83．18	s83．	¢83．18	s83，	\＄83．18	s83．18	S83．18	S83．18	\＄83．18	\＄83．18	S83．18	53，18
599．031．33	605，021．64	661，071．86	617， 182.57	62，354，40	629．587．94	3，82	6_{642}	． 65.9	655，151	661，703．26	$668,320.29$	675，003．49	681，753．53	688，571．06	699，456．77	${ }^{722.411 .34}$	99，43，45

Total Tonnage ilsposed

Prost Clossire Care osM

UnMunt saces
Total Operating Costs

Client: MpumA Proiect: Renewat

Proiect: Renewable Place: Waste Action Pla

Plan Concept: 1
PLAN CONCEPT 1
Raw calculations only, refer to Summary for actual annual allocations

Tolal Operating Costs

Pubice Arae Operations

 osm Unit Cost

Toal Tonnage Processed

CED operations

osm Unit cost
Total Tonnage Processel

1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%
(0.00\%	${ }_{\text {a }}^{0.000 \%}$	${ }_{\text {cose }}^{0.00 \% \%}$	-	${ }_{\text {a }}^{0.00 \% \%}$	${ }_{\text {cose }}^{0.00 \% \%}$	- 0.00%	0.0.0\%\%	${ }_{\text {cose }}^{\substack{0.00 \% \%}}$	- 0.00%	${ }^{0.00 \%}$	0.0.00\%	- 0.00%	-	${ }_{\substack{0 \\ 0.000 \%}}^{0.00 \%}$	- 0.00%	-	-
${ }_{524.89}$	S24.89	S24.89	S24.89	S24,89	\$24.89	524.89	S24.89	\$24.89	524.89	S24.89	\$24.89	\$24.89	S22,89	S24.89	\$24.89	\$24.89	S24.89

Tolal Operating Costs

Composing operations

\%\%Adistment ito Opeational Change (3o\% increase in year o)

Total Tonnage Processed

WFWUA Operations

Other \% Adilusment, fappicandel (none
 Tolal Tonnage Inbound
 Total Operating Costs
 Offiste Disposala and Long
Tomage Based Gownt Ra
OsM Unit Cost

Total Operating Costs

Prost Clossire Care osM

UnMunt saces
Tolil Oenerating Costs

Client: MpumA Proiect: Renewat

Proiect: Renewable Place- Waste Action Pla

Pran Concept: 1
PLAN CONCEPT 1
Raw calculations only, refer to Summary for actual annual allocations

Total Operating Costs

Puble Area Operations

 osm Unit Cost

(1.00\%	(1.00\%				(100\%	(1.00\%	年	(100\%	(1.00\%	-		-		, 1.00%	${ }^{1.00 \%}$	(1.00\%	(1.00\%
${ }_{\text {0,00\% }}^{0.000 \%}$	${ }_{0}^{0.00 \%}$	${ }_{\text {a }}$	${ }_{0}^{0.000 \%}$	${ }_{0}^{0.000 \%}$	0.00\%	${ }_{0}^{0.00 \%}$	${ }_{0}^{0.000 \%}$	0.00\%	${ }^{\text {0.0.0\% }}$	${ }_{0}^{0.00 \%}$	${ }_{0}^{0.000 \%}$	${ }_{\text {a }}$	${ }^{0.00 \%}$	-0.0\%\%	${ }_{\text {0,00\% }}^{0.000 \%}$	${ }^{0.00 \%}$	${ }_{0}^{0.00 \%}$
\$37.55	537.55	537.55	\$37.55	537.55	537.55	${ }_{537.55}$	s37.55	937.55	${ }_{537.55}$	s37.55	937.55	537.55	${ }^{537.55}$	537.5	s37.5	${ }^{537.55}$	537.55
${ }^{96,999.83}$	97,96579	98,954.45	99.934.90	100,934.25	101,943.59	102.963.03	103,992.66	105.02259	106,082.91	107,143.74	108, 215.18	109,297,33	\%0.30	11,944,21	2,609.15	(1,735	4.872.59

Toal Tonnage Processed

CED operations

osm Unit cost

Toala Operating Costs

Composing Operations

osm Unit cos

Toal Tonnage Process
Tolat Operating Cosis

WFWWA Operations

 Toala Tonnage Inbound
 Total Operating Costs

Tomage Based Growt Rai

osm Unit cost

Tola Tonnage ispose

1.00\%	1.00\%	\%	1.00\%	1.00\%	\%	1.00\%	1.00\%	1.0\%	1.00\%	1.00\%	\%	1.0\%\%	1.0\%	1.0\%	1.00\%	1.00\%	1.00\%
S83, 18	S83.18	583, 18	S83.18	\$83.18	583.18	583.18	\$83.18	S83.18	s83,	${ }_{583} 16$	s83,	S83,13	${ }_{883}$	${ }_{883}$	${ }_{883}$	${ }^{88} 3.18$	

Total Operaing Costs

Post Closure care osm

osm Unit Cost (satars in year 87,91 years trom 2018)
Units saces
Tolal Operating Cosis

321	321	321	321	321	321	${ }^{32}$	321	321	321	321	${ }^{321}$	${ }^{321}$	321	321	321	321

Date: Nov-16-2018
Worksheet 08 M
Worksheet: o8M
Plan Concept: 1
PLAN CONCEPT 1
PLAN CONCEPT 1
Raw calculations only, refer to Summary for actual annual allocations

Client：WPWMA Project：Renewable Placer－Waste Action Plan Date：Nov－16－2018 eet：O\＆M Inputs Plan Concept： 2																						
PLAN CONCEPT 2 Raw calculations only，refer to Summary for actual annual allocations						0									9	10	11	12	13	14	15	
Year																						
Lanailioperations																						
onnage Based Growth Rate \％Adjustment for Operational Change（5\％increase year 27 ） Other \％Adjustment，if applicable（ 35% increase in Year 0）		$\begin{gathered} 2.20 \% \\ 0.000 \% \\ 0.00 \% \end{gathered}$	$\begin{aligned} & \text { ane } \\ & 0.020 \\ & 0.00 \% \end{aligned}$	$\begin{gathered} 2.20 \% \\ 0.000 \% \\ 0.00 \% \end{gathered}$	2.12% $\begin{aligned} & 0.00 \% \\ & 0.00 \% \end{aligned}$	2．12\％ a．00\％ 3.500%	$\begin{aligned} & 2.20 \% \\ & 0.0020 \\ & 0.002 \end{aligned}$	2.120% 0.00% 0.00%	$\begin{aligned} & 2.20 \% \\ & 0.000 \\ & 0.00 \% \end{aligned}$	$\begin{gathered} 2.20 \% \\ 0.000 \% \\ 0.00 \% \end{gathered}$	$\begin{aligned} & 2.20 \% \\ & 0.000 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 2.20 \% \\ & 0.000 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 2.10 \% \\ & 0.000 \% \\ & 0.000 \% \end{aligned}$	$\begin{aligned} & 2.20 \% \\ & 0.000 \\ & 0.00 \% \end{aligned}$	${ }^{2.120 \%}$ $\begin{aligned} & 2.20 \% \\ & 0.000 \\ & 0.000 \end{aligned}$ 0.00%	$\underset{\substack{2.12 \% \\ \text { a．0．00\％} \\ 0.00 \%}}{\substack{10 \\ \hline}}$	$\begin{gathered} 2.12 \% \\ 0 \end{gathered} 10$ $\begin{aligned} & 2.20 \% \\ & 0.000 \% \\ & 0.0 .00 \% \end{aligned}$ 0.00%	$\begin{aligned} & 2.12 \% \% \% \\ & 0.000 \% \\ & 0.00 \% \end{aligned}$	2.120% 0.00% ${ }^{0.000 \%}$	$\begin{gathered} 2.02 \% \\ 0.00 \% \\ 0.00 \% \end{gathered}$	2.12% $\begin{gathered} \text { 2.0.00\% } \\ 0.00 \% \end{gathered}$	
osm Unit cost		s8，34	s8，34	S8，34		s8，34	S8．34	S8，34	S834	58．34	S8．34	s8，34	s8，34									
Toial Landill Tommge Exculung Tonmage Attibuable to o otre facilies		248,23227	25，949480	258．86889	264，366．91	362．486．19	370，170．90	378，019．52	386，032，52	394，216．41	402，537．79	411，108．36	419，823，86	428，724，12	$437,813.07$	447，094，71	456，573．12	466,25247	476，37．02	486，231．13	498.5923	507，06， 86
Toial Poeraing Cosis	s2026，382．93	\＄2069，3225	S2，113．21230	s2，158．012．40	s2203，7627	53，021，788．82	\＄3，085．800．95	5，515，281．21	53，218，08，37	\＄3，28，311．84	\＄3，35．981．65		53，49，783．59	\＄3，573，97900	\＄3，699，74735	s，3，27，12200	53，00，136．98	53，888．827．09	53，996．27．82	S4，053，35．45	\＄4，13，9307．01	01 S4，227，06
Prulic Area Pramitions																						
		${ }^{2.120 \%}$	$\underset{\substack{2.120 \\ 0.006}}{\substack{10}}$	$\underbrace{2.12 \%}_{0.100 \%}$	${ }_{\substack{2 \\ 0.102 \%}}^{0.008}$	$\underbrace{\substack{\text { a }}}_{\substack{2.12 \% \% \\ 0.00 \%}}$	coin	$\begin{gathered} 2,12 \% \% \\ 5000 \% \end{gathered}$			$\underbrace{\text { and }}_{\substack{2.12 \% \\ 0.00 \%}}$			${ }^{2122 \%}$	${ }^{2.120 \%}$	${ }^{2.122 \%}$						
osm Unit cost	87．55	${ }^{837.55}$	${ }^{\text {s77．55 }}$	${ }^{537.55}$	${ }^{537.55}$	53．55	387．55	${ }^{537.55}$	${ }_{53} 8.55$	537．55	${ }_{537.55}$	${ }^{537.55}$	S37．55	${ }^{53775}$	${ }^{537.55}$	S37．55	${ }_{537.55}$	${ }^{\text {s37．55 }}$	${ }^{537.55}$	${ }^{537.55}$	${ }^{537.55}$	
Toil Tomage Pricassed	17，207	17，571．28	17，943，79	8，32420	8，71267	20．980．65	23，523．50	35，78．95	36，542．57	37，317．27	38，10840	38．91629	39，741．32	40．53，${ }^{\text {a }}$	41，44421	42,3283	43220.07	44，13，34	${ }^{45,072.03}$	46，027．56	47，003．34	
Tooil Opeating Coss	59．038．46	S659，73．48	S673，20．85	S688．0373	s702．58941	s787，74324	s883217．73	\＄1，393，55．80	S1，372．034．08	\＄1，401，12120	\＄1，430．824．97	s1，461，15846	\＄1，492，13502	\＄1，53，76829	\＄1．56，072．17	\＄1，589，00．90	\＄1，227，78999	\＄1．67，751．27	51，99228288	\＄1，728，15928	51，764，79825	25
Cubo oreations																						
		${ }_{\substack{2.12 \% \% \\ 0.00 \%}}^{\substack{\text { a }}}$	2.12%	${ }_{\substack{\text { 2，} 21 \% \% \\ 50.0 \% \%}}$	cole		$\underbrace{}_{\substack{2.12 \% \\ 0.00 \%}}$	$\underbrace{2.12 \%}_{2}$	${ }_{\substack{2.12 \% \% \\ 0.00 \%}}^{\substack{\text { a }}}$	${ }_{\substack{2.12 \% \% \\ 0.00 \%}}^{\substack{\text { a }}}$	$\underbrace{\substack{21 \% \% \\ 0.00 \%}}_{\text {2，}}$	$\underbrace{\substack{\text { a }}}_{\substack{2.12 \% \\ 0.00 \%}}$	$\underbrace{\substack{2 \% \% \\ 0.00 \%}}_{\text {2，}}$	${ }_{\substack{2.12 \% \\ 0.00 \%}}^{\substack{\text { a }}}$	$\underbrace{\substack{\text { a }}}_{\substack{2.12 \% \% \\ 0.00 \%}}$	$\underbrace{\substack{\text { a }}}_{\substack{2.12 \% \\ 0.00 \%}}$	${ }_{\substack{2.12 \% \\ 0.0 \% \%}}^{\substack{\text { a }}}$	${ }_{\substack{2.12 \% \\ 0.0 \% \%}}^{\substack{\text { a }}}$	$\underbrace{\substack{\text { and }}}_{\substack{2.12 \% \\ 0.00 \%}}$	$\underbrace{\substack{2 \% \% \\ 0.00 \%}}_{\text {2，}}$		
（e）					（0．00\％	（tanem		－	（0．0．0\％		隹	${ }^{\text {a }}$	隹		${ }_{\substack{0}}^{0.00 \% \%}$	隹	隹		${ }_{\text {cose }}^{\substack{0.00 \% \%}}$	隹		
osm Unit cost	${ }^{324.89}$	${ }^{24,99}$	${ }^{224.89}$	${ }^{52489}$	524.89	${ }_{524,89}$	${ }_{52489}$	524.89	${ }^{524,89}$	524.89	${ }_{524.89}$	${ }_{52489}$	524.89	524，89	${ }^{524.89}$	s24．89	${ }^{524.89}$	S24．89	${ }_{52489}$	${ }_{524.89}$	S24，99	
Toill Tomage Pricessed	${ }^{83,986}$	${ }_{85,674.08}$	${ }^{87}$ 8900．38	176，835．55	180，544．46	364，99731	372，73525	880，63724	388，70675	396，94733	405，36262	413，965．30	$422,732.18$	431，694，10	440，84602	450，191．95	459，783．02	469，98242	479，43，45	489，599，10	499，978	510，578．53
Tooil operaing Cosis	${ }^{\text {s2，08，} 179.75}$	S2，122499．16	S2，17，657．08	S4，401．480，49	S4，994，791．87	s90．08，87，34	s9277，4265	s，974，155．07	s9，675．077．16	s，．880，17731	510．089，575．80	s1，303，474．81	S10，521．008．	972	．766	S11，205，38900	\＄11，42，99425	51， 1 88，533．65	51，933266．96	12，186，25222	12，444，60077	71 \＄12，708，426
Composing operations																						
		cinction	$\begin{gathered} 2.102 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 2.12 \% \\ 0.00 \% \end{gathered}$		$\underbrace{\substack{2.2 \% \% \\ 3000 \%}}_{\text {2，}}$		${ }_{\substack{2.12 \% \\ 0.00 \%}}^{\substack{\text { a }}}$	${ }_{\substack{2.12 \% \\ 0.00 \%}}^{\substack{\text { a }}}$	$\underbrace{\substack{212 \% \% \\ 0.00 \%}}_{\text {2，}}$	$\underbrace{\substack{\text { a }}}_{\substack{2.12 \% \\ 0.00 \%}}$	${ }_{\substack{2,12 \% \\ 0.00 \%}}^{\substack{\text { a }}}$	$\begin{gathered} 2.120 \% \\ 0.006 \end{gathered}$	2.12% 0.006	$\underbrace{\substack{\text { a }}}_{\substack{2.12 \% \\ 0.00 \%}}$		${ }_{\substack{2 \\ 0.10 \% \%}}^{\substack{\text { 20\％}}}$		$\underbrace{\substack{\text { a }}}_{\substack{2.12 \% \\ 0.00 \%}}$	${ }_{\substack{2.12 \% \\ 0.00 \%}}^{\substack{\text { a }}}$		
																	0．00\％					
osm Unit cost	${ }^{53493}$	534.93	\＄34．93	\＄34．93	S34．93	${ }^{534.93}$	${ }_{53493}$	S8．93	\＄34．93	s34．93	\＄34．93	${ }^{53,93}$	S34．93	\＄34，93	S34．93	S34．93	S34，93	534.93	S34．93	53493	534．93	
Toal Tomage Processed	65.54	66，984，44	68，004，51	69，556．69	71，335．61	4，286，	${ }^{96,24688}$	98，287．11	100，30，79	102498.65	100，671．63	108，80．6．6	109，156，75	111，470．87	113，834．05	116，247，33	118，711．78	121.22847	123，798．51	126，423．04	129.10321	21
Tooil Opeating Coss	1，07，92	S2339．659．98	S2．39925975	s2，439，1206	S2491，68．19	53，291，95238	s3，361，74177	53，43，010．70	s3，505，790．52	\＄3，580，11328	53．66．011．68	53，73．599．13	s3，812，66974	53，989，9983	\＄3，76，000．50	\＄4，060，32256	\＄4，146，411，61	\＄4，24， 315.53	\＄4，324，0302	\＄4，415，753．58	\＄4，509．377．56	56
mewnaoperators																						
Tonnae Eased Growt Rate																						
\％Adjustment for Operational Change（increase by 3 staff in 2020，increase by 5 staff in 2027））		0.00% 0.00% 0.0	0.00% 0.00%		$\begin{aligned} & 0.00 \% \\ & 0.00 \% \end{aligned}$	0.00% 0.00%	0.00% 0.00%	0.00% 0.00%	0.00% 0.00%	0．00\％	$\begin{gathered} 25.04 \% \\ 0.00 \% \\ \hline \end{gathered}$	0.00% 0.00%	${ }^{0.000 \%}$	0.00% 0.00%	0.000% 0.00%	0.00% 0.00%	0.00% 0.00%	0.00% 0.00% 0.0	0.00% 0.00%	0.00% 0.00% 0		
osm Unit cost		${ }^{89} 84$	s9．84	${ }_{59} 984$	${ }_{59,94}$	59.84	s984	59.84	s984	59.84	59.84	59.84	${ }_{5984}$	s98．84	s98．84	5984	59.84	s9．84	${ }_{5984}$	5984	s9．84	
Toait Tommage hbound	456，561	466623.80	476，12409	557，761．24	${ }_{569.95978}$	581，661．00	599，99221	606，548．85	619，444，44	632，576．67	804，407．61	821，461．05	838．876．02	856，68020	874，821，39	893，367．61	912，307．00	931，647，91	951，398，84	971，568．50	992，167．75	7 1．013，19
Tooil opeaing Cosis	4，492，155，${ }^{\text {a }}$	s4，587，39954	S4，684，682， 19	s5，487879988	85，604，23，04	55，723，022．56	s5，44，360．85	55．968，261．30	S6，097，788．44	S6．23，997．96	s79914，66328	S8．082454．14	S8，25，80217	S8，48，78278	S8．60747297	s8，789．951．40	s8976，29837	\＄9，166．59989	s9，360．927．73	s9．59，379．39	s9，762．03224	24 59，968．993
Tommage Based Gownt Rate					2．12\％	2．12\％	${ }^{2.12 \%}$	2．12\％	2．12\％	2．12\％	2．12\％	2．12\％	2．12\％	2．12\％	2．12\％	2．12\％	2．12\％	2．12\％	${ }^{2.12 \%}$	2．12\％		
osm Unit ost	S83，18	ร83， 18	s83， 18	s83， 18	ร83，18	ร83， 18	ร83，18	s93，18	s83．18	s83．18	s83， 18	s83，18	s83，18	s83，18	s83，18	s83， 18	s83，18	s83，18	s93，18	S83，18	¢83， 18	
Toial Tomase isposed	290.95	297，12529	${ }^{30,324,34}$	309，956．94	36，425．91	323，134，14	32，984，58	36，980	54，124，24	351，41	358,86	366，47	374，247	382，181	390.283.	388．55	407.	415，63	424，44．86	433.	4426	17 452．018
Toal operating Coss	2001，1827	S24，714，27733	\＄25，288，189， 38 s2	55，773，23899	S20，319，631．66	52，877，60785	s27．477．13．14	52，029298．30					S3，1．129，07．7．89	53，789，01434	S32．62，941．14		1	，	\＄5，5，30，583，55	S36，053．00．72	S30．817．365．18	18 387，997，993
Post cossue caroosm																						
Tommae Basad fiown Rate（rot Used）		2．12\％	2．12\％	2．12\％	12\％	2．12\％	2．12\％	2．12\％	2．12\％	2．12\％	2．12\％	2．12\％	2．12\％	2．12\％	2．12\％	2．12\％	2．12\％	2．12\％	2．12\％	2．12\％	2．12\％	
OsM Unit ost（satats in year 67,71 yeas tom 2018 ）	\＄1．006．00	S1，006．00	81，006，00	81，006．00	s1，006．00	\＄1，00．00	\＄1，060．00	S1，006．00	S1．006．00	81，006．00	S1，006．00	\＄1，006．00	\＄1，006．00	51，006．00	\＄1，006．00	S1．006．00	\＄1，006．00	S1，000．00	\＄1，006．00	\＄1，006．00	\＄1，006．00	
Units acases）					365	365	${ }_{365}$	365	${ }_{365}$	365	365	365	365	365	365	365	365	365	365	365	365	65
Tooal opeainig Cosss	5566，190．00	S566，9000	S566，	\＄566，1	556,1																	

Client: WPWMA Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018 Worksheet: O\&M Inputs Plan Concept: 2																						
PLAN CONCEPT 2 Raw calculations only, refer to Summary for actual annual allocations	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	${ }^{34}$	35	36	${ }^{37}$	37
Lendimuorations																						
onnage Based Growth Rate \% Adjustment for Operational Change (5\% increase year 27) Other \% Adjustment, if applicable (35% increase in Year 0)	2.12% $\substack{0.00 \% \\ 0.00 \%}$	$\underset{\substack{2.12 \% \\ 0.000 \\ 0.006}}{\substack{2 \\ \hline}}$	2.12\% 0.00\% 0.00%	2.12% $\substack{2.000 \\ 0.00 \%}$	$\substack{2.12 \% \\ \text { o.0.00\% } \\ 0.00 \%}$	${ }_{\substack{2.12 \% \\ 0.000}}^{2}$ 0.00\%	2.120% $\substack{0.000 \\ 0.00 \%}$	${ }^{2.129}$ (0.00\%	$\underset{\substack{2.12 \% \\ 0.006}}{2}$ 0.00\%	2.12\% 0.00\%		2.12% 0.006 0.0 0.000%	1.00% $\substack{1.000 \\ 0.00 \%}$	1.00% 0.000 0.0 0.00\%	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \\ & 0.00 \% \end{aligned}$	$\underset{\substack{1.00 \% \\ \text { 0.000 } \\ 0.00 \%}}{\substack{10 \\ \hline}}$		$\underset{\substack{1.00 \% \\ \text { jo.00 } \\ 0.00 \%}}{\substack{10 \\ \hline}}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \\ & 0.00 \% \% \end{aligned}$		$\begin{aligned} & 1.00 \% \\ & 0.00 \% \\ & 0.00 \% \end{aligned}$	
osm Unitcost	s8,34	S8.34	ss,34	s8,34	s8.34	s.3.34	se.34	s8,34	s8,34	s8,34	ร8,34	s8,34	s8, 34	s8,34	s8,34	s8.34	s8,34	S834	${ }_{88}, 34$	58.34	s8,34	
	517,815,65	8,793,	540,003.76	55,451.34	563,12262	${ }_{575.081,25}$	577,27.97	599,723,16	612,43729	625,420.9	${ }^{669.950,93}$	${ }^{684,153,89}$	690.95,43	697,95,38	704,894	711,93,	719.052 .6	726,24	73,505.	740,840	748,24.9	
Tooal operaing Cosss	54,316.674.00	S4,408,187.49	S4,50, 641,06	S4,597.75.85	54,694,533.86	S4,794,057,98	S4,895.620 1	54,999,808.68	55,105460.67	55213,70563	s5,54,421.47	s5,703,32, 80	s5.70.a3502	55.817,95.57	s5,877,183.15	s5,934,899,54	55,994289.53	S6.054,19.02	s6.114,7293	56,175.88026	S6237,699.06	0656
Pumice cra operations																						
Tomaje Based foum hate	$\begin{gathered} 2.120 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 2.12 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 2.120 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 2.12 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 2.1296 \\ 0.00 \% \end{gathered}$	$\begin{gathered} 2.12 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 2.12 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 2.120 \% \\ 0.00 \% \end{gathered}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\underset{\substack{1.00 \% \\ 0.006}}{\substack{1 \\ \hline}}$	1.00% 0.00%	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	1.00\%	0.00\%					
osm Unit cost	${ }^{537.55}$	${ }^{37} 5.55$	${ }_{53} 83.55$	${ }_{53} 53.55$	${ }^{537.55}$	${ }^{537.55}$	s37.55	s37.55	${ }^{537.55}$	s37.55	${ }^{377,55}$	${ }_{\text {s37,55 }}$	${ }^{537.55}$	${ }_{53755}$	\$37.55	S37.55	${ }^{37} 7.55$	S37.55	${ }_{37} 8.55$	${ }_{37}{ }^{\text {5 }}$	${ }^{\text {37,55 }}$	
Toal Tomage Processed	490.077.41	50.06.58	51,117.78	52.201 .47	53,309.15	54,438.28	55,59237	56,770.93	57,974,47	59,209, 53	${ }_{\text {60,458.85 }}$	61,740,37	62,35777	${ }_{6}$ 2,981.35	${ }_{63,611.16}$	64,24728	64,88975	6,5,58, 65	66,14903	66,85,97	87,54.53	
Toial opeaing Cosis	s1, 300446178	\$1,879.436.62	\$1.919.277.61	51,959.96,30	s2000,577.58	52049399976	s2087,28.49	s2, 13, 5, 31, 86	52,176.720.34	S2222,868.81	s2269.991.58	s2,318,15.40	${ }^{\text {s2341,296,56 }}$	s2364,709.52	s2,388,36.62	s2412.20.19	\$2,46,532.59	${ }^{22460,72621}$	S2,48,333.48	s2550,188.81	\$25352889.68	${ }^{2} 25$
cuborearions																						
Tomage eased Goun Rate	$\begin{gathered} 2.120 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 2.12 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 2.102 \% \\ 0.00 \% \end{gathered}$	$\begin{aligned} & 2.120 \% \\ & 0.00 \% \end{aligned}$	$\begin{gathered} 2.12 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 2.120 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 2.12 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 2.120 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 2.12 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 2.1 .12 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 2.120 \% \\ 0.00 \% \end{gathered}$	$\begin{gathered} 2.12 \% \\ 0.00 \% \end{gathered}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & \text { 1.000 } \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	
Onter \%Adiusisment, apopical																						
osm Unit cost	S24.89	S24,99	${ }^{224.89}$	524.89	524.89	s24.89	S24.89	524.89	S24,89	S24,89	s24.89	\$24.89	s24.89	${ }^{524.89}$	s24.89	524.89	S24,89	S24,89	S24.89	S24,89	S24.89	
Toal Tomage Procossed	.028, 81	${ }_{532456.55}$	543,74.4,63	555,27202	567,04778	57,065.11	591,34129	60,877.73	616,679.93	${ }^{29,753,55}$	693,00432	656,73.14	663,306.52	669.93.57	676,637.96	683,009,34	690.289,38	697,400,76	704,12,17	711,5329	718,264.18	725,47748
Toial opeaing Cosis	2,977, 84, 94	252,97525	13,533,983.33	\$13,82,.857.82	514,113,800.01	S14,413,73, ${ }^{4}$	4,78,63.01	030,65598	, 39.9361 .10	674,721.60	16,007,02,70	16,346,374.65	16,509,883, 39	S16,674,936,78	S1,68,14	17,000,10301	17,180,200,04	S17,552,00608	\$1,525,526.14	S17,70,781.40	517,877,79921	21
Composimg operitions																						
Tomage based Gioun Rale	${ }^{2.12 \%}$																	${ }^{1.00 \%}$	${ }^{1.00 \%}$	${ }^{1.00 \%}$		
	-	${ }^{0.000 \%}$	0.000% 0.00%	0.000% 0.00%	${ }^{0.000 \%}$	0.000% 0.00%	${ }^{0.000 \%}$	${ }^{0.000 \%}$		隹	${ }^{0.000 \%}$		${ }^{0.000 \%}$	${ }^{0.000 \%}$	0.00\% 0.00%	0.00% 0.00%	${ }^{0.000 \%}$	0.00% 0.00%	-	0.000% 0.00%		
osm Unit cost	\$34,93	S34.93	\$34,93	534,93	S34,93	\$34.93	${ }_{534.93}$	S34,93	${ }^{538.93}$	${ }^{539.93}$	534.93	\$34,93	${ }^{534.93}$	\$34,93	\$34.93	S34,93	${ }^{534.93}$	S4.93	${ }^{534.93}$	${ }_{534.93}$	534.93	
Toal Tomage Processed	${ }^{34,6832.21}$	7,88947	140,00425	$143,380.82$	146,420.49	49,524.61	152,894.53	155,931.65	159,237.41	112.61324	${ }_{168,06,04}$	69,58, 12	171,27,94	${ }_{172,989,70}$	174,799.90	176,46.80	178,23,47	180,013.78	181,813,92	183,38306	185,468.38	38
Toial opearing Cosis	S4,702,591.43	54,802 286,37	S4,904,04, 84	s5,008,061.65	55,14,23256	55,22.65429	s5,33,3,74, 56	s5,46,422:10	55,561.006.68	s5679,991910	55,00,23126	s5,923,196.17	s5,982428.13	s6,042,25241	s6,102674.93	s6,163,701,68	25,38,70	s6,887,5209	S6,55,4680.	S66413,92,69	s6,47,1241	41
wrwma oraniters																						
	$\underbrace{2.12 \% \%}_{0}$	${ }^{2.122 \%}$	$\begin{gathered} 2.102 \% \\ 0.00 \% \end{gathered}$	${ }^{2.122 \%}$	$\begin{gathered} 2.120 \% \\ 0.00 \% \end{gathered}$	$\underbrace{2.12 \% \%}_{0}$	$\underbrace{}_{\substack{2.12 \% \% \\ 0.0 \% \%}}$	$\underbrace{2.12 \% \%}_{0}$	$\underbrace{2.12 \% \%}_{0}$	$\begin{gathered} 2.120 \% \\ 0.00 \% \end{gathered}$	${ }^{2.122 \%}$	$\begin{gathered} 2.102 \% \\ 0.00 \% \end{gathered}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\underbrace{\substack{100 \%}}_{\text {lione }}$	-	$\underbrace{1.00 \% \%}_{0}$			1.000\%		
Oneorse	${ }_{\text {cose }}$	${ }_{0}$	-	0.0.0\%	0.0.0\%\%		-0.0\%\%	${ }_{\text {a }}^{0.00 \%}$	${ }_{\text {a }}$	-0.0.0				${ }^{\text {0.00\% }}$	${ }_{\text {cose }}$	${ }_{\text {coin }}$	${ }^{\text {0.00\% }}$	0.00	${ }_{\text {a }}$	${ }_{\text {a }}^{0.00 \%}$		
osm Unit cost	s9.84	59.84	s9.84	s9.84	59.84	s9.84	s.9.84	s9.84	s9.84	5984	s9.84	s.9.84	59.8	59.84	59.84							
Toili Tomagen mbound	1.034,679.50	1.056.614,70	1.07,.014,93	1,00, 890.05	1,125.250.12	1,1499,10542	1,173,466.46	1,198,343.95	1.223,788.84	1,299,99231	1.276, 185,79	1.303220 .93	1.316,273.34	1,329,468.07	1,342,70.43	1.356,15,74	1.369,719	${ }^{1.333,416}$	1,397250.	1.41, 223	1,425.35.41	41
Tooil operaing Cosis	10,180,386.11	396,15923	10,616,57:81	S0,841,288, ${ }^{\text {a }}$	1,071,471.37	S1,306,186.56	11,545,577.71	790,60632	040,612:11	12,299,87309	2.56,545,59	$22^{744} 36$	71.81	81.52	86,34	39920	833.19	60.53	7175	19472	2066.66	66 s4, 164,28,
Tonnage Based Growt Rate	212\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	${ }^{212 \%}$	${ }^{2.12 \%}$	${ }^{2.2 \% \%}$	212\%	${ }^{2.12 \%}$	2.12\%	1.0\%\%	1.00\%	1.0\%\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	
osm Unit cost	${ }^{583} 18$	${ }_{583.18}$	${ }_{\text {s83,18 }}$	S83,18	58.18	S83.18	S83.18	s83,18	S83.18	583.18	${ }_{\text {883,18 }}$	s83,18	S83.18	583.18	S83.18	S83,18	se3,18	S83.18	583.18	S83.18	${ }^{\text {s83, } 18}$	
Toal Tomage Eisosesed	461,600.79	47, 386.73	481,380.13	491,569.39	502007.00	512,649.54	523,517.71	534,61629	545,950.16	55,524,30	569,94, 81	581,413.30	587,28.04	599,10032	599,031.33	605,021.64	${ }^{611,07.1 .86}$	617,18257	623,354,40	629,587.94	635,88, 32	
Tootio Oeparing Cosis	53,394.988,66	s9,208,92200	40,040,71/.57	S0,889,02320	S41,75.5.87,50	S2, 414109495	S4,545,589,16	54,468,24199	45,410.98872	46,373.81726	S77,36.803 30	48, 300,767,53	S4, 844.37521	S99,323.818,96	S49,82,147,15	S0,324,40862	S0,827,65271	551,33,92923	s51,399,288.52	s52387,781.41	S52891,45922	22 S53,420,37
Prosclossur caroosm																						
Tommee Based Giown Raiel (rot tued)	2.12\%	12\%	2.12\%	12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	2.12\%	1.00\%	1.00\%	.00\%	1.00\%	1.00\%	1.00\%	1.00\%	.00\%	1.0\%	
OsM Unit ost (satats in year 67, 71 years tom 2018)	S1,006.00	S1,006.00	S1,006.00	\$1,006.00	S1,000.00	S1,006.00	S1,006.00	S1,006.00	S1,00600	\$1,006.00	S1,006.00	S1,006.00	S1,006,00	S1,00600	S1,006.00	S1,006.00	S1,006,00	S1,006.00	\$1,006.00	s1,006,00	51,00600	
Units saces)	365	365	${ }_{365}$	365	${ }_{365}$	365	365	365	365	365	${ }_{36}$	365	365	365	365	365	365	365	365	${ }_{365}$	${ }_{365}$	
Toail opeaing Cosis	S586, 190.00	556	S566,19000	\$586,90000	5586,100.	\$586,190.0.	568,190	5886,9000	\$556,190.0	S566,90000	5566,90000	\$586,19000	S56, 19000	5566,19000	\$56\%,190,	S566,19000	556	S566,19000	S566,19000	S566,19000	\$566,190.00	-00 s566.190

Client: WPWMA Project: Renewable Placer - Waste Action Plan Date: Nov-16-2018 Worksheet: O\&M Inputs Plan Concept: 2																						
PLAN CONCEPT 2 Raw calculations only, refer to Summary for actual annual allocations	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	${ }^{56}$	57	58	59	59
Lenafilo																						
onnage Based Growth Rate \% Adjustment for Operational Change (5\% increase year 27) Other \% Adjustment, if applicable (35% increase in Year 0)	0.00\%		1.00% 0.00% 0.00%	1.00% $\substack{1.000 \\ 0.00 \%}$ 0.0	$\underset{\substack{1.00 \% \\ 0.000 \\ 0.008}}{\substack{1 \\ \hline}}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \\ & 0.00 \% \end{aligned}$	$\underset{\substack{1.00 \% \\ \text { 0.000 } \\ 0.00 \%}}{\substack{10 \\ \hline}}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \\ & 0.00 \% \end{aligned}$	1.00% 0.000 ${ }_{0}^{0.000 \%}$	1.00% $\substack{\text { a.000 } \\ 0.00 \%}$	$\underset{\substack{1.00 \% \\ \text { jo.00\% } \\ 0.00 \%}}{\substack{10 \\ \hline}}$	1.00% 0.00\%	$\begin{aligned} & 1.00 \% \\ & 0.000 \\ & 0.00 \% \end{aligned}$	1.00% 0.000 0.0 0.00\%	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \\ & 0.00 \% \end{aligned}$	$\underset{\substack{1.00 \% \\ \text { 0.000 } \\ 0.00 \%}}{\substack{10 \\ \hline}}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \\ & 0.00 \% \end{aligned}$	$\underset{\substack{1.00 \% \\ \text { jo.00 } \\ 0.00}}{\substack{10 \\ \hline}}$	0.00\%		$\begin{aligned} & 1.00 \% \\ & 0.00 \% \\ & 0.00 \% \end{aligned}$	
osm Unitcost	s8,34	s8,34	ss,34	ss,34	ss, 34	s.3.34	S8.34	s8,34	S8.34	s8,34	s8,34	s8,34	58,34	s8.34	se.34	s8.34	s8,34	s8,34	s8,34	s8.34	s8.34	34 s8,
	${ }^{763,288.84}$	9,92,7	778.830 .9	796,41725	994281.43	${ }^{802} 224,24$	0.264,48	${ }_{818,384.95}$	826,522	838.797	843,145.	851,57,20	880.029.	886,93.90	877,30	888,154	895,016.	903,968	913,008	922,138	931,357	940.671.00
Toial Operaing Costs	s,3,36,015,60	56426,64576	s6.490.91222	S6.555.221.34	56.621,397.55	56,887,593.35	s6,754,49928	s6.822,13.98	s6.890234,11	s6,959,13646	s7,028,72, ${ }^{\text {a }}$	s7.099.015.10	s7,170.00225	s7,24,705,30	s7,34,12238		s7,461,13621	57,535,777.58	s7.611,050.05	s7,887.216.10	5,764,08926	26 s7,84,1729,15
Puwic erao pearions																						
Tomaje fased Gioum Riaie	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	1.00% 0.00%	$\underset{\substack{1.000 \% \\ 0.00 \%}}{1 .}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	1.00\%	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	1.000	$\underset{\substack{1.00 \% \\ 0.006}}{\substack{1 \\ \hline}}$	1.00% 0.00%	$\begin{aligned} & \text { 1.00\% } \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	1.00\%	0.00\%	
osm Unitcost	S37.55	537.55	537.55	${ }^{37,55}$	${ }^{37,55}$	537.55	${ }^{37} 75$	${ }_{\text {37.55 }}$	837.5	537.55	${ }^{37} 95$	${ }_{37,55}$	S37.55	${ }^{373.55}$	${ }^{537.55}$	${ }_{\text {337.55 }}$	${ }_{83} 8.55$	${ }^{537,55}$	${ }^{37} 7.55$	${ }_{837.55}$	${ }_{\text {s77,55 }}$	
Toill Tomage Processed	68,88,77	69,570.59	70,26,30	70.986.96	71.678.65	72,35944	73,19,39	73.850.59	74,58909	75,33,98	7.,08833	7,689922	77,677.71	78,993.89	79,177.82	79,996.60	${ }_{80,769.30}$	81,57.99	82,3276	${ }^{83,216,69}$	84,048.86	
Toail Opeaing Cosis	S2.586,27798	S2612,10:46	s2638,23.56	52.664,613:88	52691,20002	s2,718,17262	52744,564.35	s2,72.80789	52800.535.97	s2828,54, 33	s2866,826,74	52886,950,	529.914.289.96	52,933,39,45	s2,97285736	s3,02,55362	\$3,32,579.15	${ }_{53,062,9494}$	53,093,53399	${ }_{\text {s3,124,499,33 }}$	\$3,155,714.03	${ }^{103}$ S3,187,
CxDOPerations																						
Tomage Esaed foun Ratio		$\begin{aligned} & 1.00 \% \\ & 0.00 \% \\ & 0.00 \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	1.00\%	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	1000\%	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & \text { 1.000 } \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 1.00 \% \\ & 0.00 \% \end{aligned}$	0.00%	
Onee OAAdisisment, I, Popliable																						
osm Unit cost	S24,99	524.89	${ }^{224.89}$	524.89	524.89	S24.89	524.89	${ }_{524}$	524.89	S24,99	524.89	\$24.89	S24.89	S24.89	s24.89	S24.89	s24.89	524.89	S24.89	S24.89	S24,99	
Toal Tomage Processad	${ }^{32,701.95}$	740.028 .97	77,429.26	54,903, 55	82,452.59	70.077.11	77,777.88	185.55 .66	s,41122	80, ,44.33	09,358.79	${ }_{817,45237}$	825,62.90	83,883,17	42222200	50,644	85,150.66	887,42	878.41	885,183.	89,08	92-92,975.98
Toial opeaing Cosis	8,237,13277	9,504.10	.003,699.14	789,736.13	977,63.50	7,0093	9.083.93	65747	8.201 .52	45,683,5	,10.37	46,59.77	20,50.057.69	20.756.55827	2.96.113.35	.122.74499	4724	,37.1	300	443	22,257.7677	77 524.455 .295
Composimg operitions																						
Tonnege Based Goiout Rate	${ }^{1.00 \%}$																	1.00%	${ }^{1.00 \%}$	${ }^{1.00 \%}$		
	${ }_{\text {cose }}^{\substack{0.00 \% \%}}$	${ }^{0.000 \%}$	${ }^{0.000 \%}$	${ }^{0.000 \%}$	0.00% 0.00% 0.0	${ }^{0.000 \%}$	${ }^{0.000 \%}$	${ }^{0.000 \%}$	${ }_{\text {cosem }}^{0.000 \%}$	${ }_{\text {cose }}^{\substack{0.00 \% \%}}$	${ }^{0.000 \%}$	${ }^{0.000 \%}$	${ }^{0.000 \%}$	${ }^{0.000 \%}$	0.00\% 0.00%	0.00% 0.00%	${ }^{0.000 \%}$	0.00% 0.00%	-	0.000% 0.00%		
osm Unit cost	\$3493	S34,93	\$34.93	534.93	S34,93	\$34,93	\$34,93	\$34.93	\$34.93	\$34,93	\$34,93	\$34,93	534.93	\$34,93	${ }^{534.93}$	${ }^{534.93}$	${ }^{534.93}$	${ }^{534.93}$	${ }^{534.93}$	${ }^{539.93}$	${ }^{\text {s34,93 }}$	
Toal Tomage Processed	,9629	191,088.26	192,999, 14	194,929,13	96.887.42	198,87720	200,33,58	202,844.03	204.8724 .47	206,921:20	208,909.41	211,080,31	23, 191.12	215,323.03	217,76726	219,651.02	22, 847.53	224,066.01	228,306.67	229,56973	230,85543	3
Toial Opeating Costs	32247	56677,40570	s6,741,19975	S6.800.561.25	56.876.64686	56,94,413,33	57,014.867.47	57,085,106.14	57,15.866.30	s7,27,74497	57,29.69922	57,37.69621	57,464.423.17	57,520.887.40	57,568,99288	57,672.05724	8,777.81	s7,826.26559	57,904,52824	57,98,577.53	58.03,40926	${ }^{26}$
wrwma oraniters																						
Tomage Based Giount Rate																						
	${ }_{\text {coiol }}^{\substack{0.00 \% \%}}$	${ }_{\text {cose }}^{\substack{0.00 \% \%}}$	0.00% 0.00%	0.00\% 0.00%	${ }_{\text {coiol }}^{0.00 \% \%}$	0.00% 0.00%		${ }_{\text {coiol }}^{0.00 \%}$	$\underbrace{0.00 \% \%}_{0}$	${ }_{\substack{0.00 \% \%}}^{0.00 \%}$	${ }_{\substack{0.00 \% \% \\ 0.00 \%}}^{0.0}$	${ }_{\text {cose }}^{0.00 \% \%}$	${ }_{\text {cose }}^{0.00 \% \%}$	${ }_{\text {coiol }}^{0.00 \% \%}$	0.00% 0.00%	${ }_{\substack{0.00 \% \%}}^{0.00 \%}$	${ }_{\text {coiol }}^{0.00 \% \%}$	${ }_{\substack{0 \\ 0.00 \% \%}}^{0.00 \%}$	${ }_{\substack{0.00 \% \%}}^{0.00 \%}$			
osm Unit cost	s9.84	s9.84	s9.84	59.84	59.84	s9.84	5984	s9.84	59.84	59.84	s9.84	s9,94										
Toill Tomage mbound	1,45,984,65	1,468,524,50	$1.483,20974$	1,48,041.84	1.513,0226	1.522,15248	1.54,3434.01	${ }_{\text {1,55, 868.35 }}$	1.574,457.03	1,590,20.60	1.006,10362	1,622,164.65	1.638.36.30	1.654,70.16	1.77,317.86	1.888,031.04	1,704,911.3	1,721.960	1,739,180	1,76,571.87	1,774,137.59	59
Toial Opeating Coss	\$14,305.598000	9830	93,479,19	9,413,99	68.808.13	567621	6,03297	,893, ${ }^{\text {a }}$	27223	1849	54880	6732	800	18280	116.444,29763	40.6	28.0	5763	00200	s,12208	5.953,	30
Tomage Based Growt Rate	1.0\%	1.00\%	1.00\%	1.0\%\%	1.00\%	1.0\%\%	1.0\%\%	1.00\%	1.00\%	1.00\%	1.0\%\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	1.00\%	
osm Unit osst	${ }^{\text {s83,18 }}$	${ }_{\text {s83,18 }} 18$	${ }_{583.18}$	${ }_{583} 18$	583.18	${ }^{583} 18$	583.18	S83, 18	S83.18	583.18	${ }^{583} 18$	s83,18	83,18	583.18	s83,18	83.18	${ }_{\text {s83,18 }}$	83.18	s83,18	${ }_{\text {s83,18 }}$	${ }_{\text {s83,18 }}$	
Toal Tomage Eisosesed	688,665.99	655,15174	661,70326	66,32029	675,003,49	681,753,53	68,571.06	${ }_{695456877}$	702411.34	709,43545	716,529,81	723,99.11	730,92206	${ }_{73,24138}$	745,623.79	755,080,03	780.610 .83	768,216.94	75,899,11	78,658.10	79,494.68	
Tootio Oeparing Cosis	\$55,54,577.55	544994,123 33	556,09,04456	S5,599,4522	S56,145,39976	S6,70.8.8326	57, 27, 3,7129	S5,846,610.00	S6,425,076.10	S59,00932887	S59,599.420.13	S0,095,414.34	50,797,368.48	S6,400,322.16	S2, 019,95958	52,69,599,54	63,265,95,44	S6, 898,46529	S64,537,63174	S6, 18300806	S65,84,883.14	14 S66,993,188
Postclosurc caroosm																						
Tomage Basad fiowt Raies (not sused)	1.00\%	1.00\%	10\%	1.00\%	1.00\%	1.0\%\%	1.00\%	1.00\%	1.00\%	1.00\%	.00\%	1.00\%	.00\%	1.00\%	10\%	.00\%	100\%	1.00\%	1.0\%	100\%	.00\%	
OsM Unit ost (satats in year 67, 71 years tom 2018)	S1,006,00	S1,000.00	\$1,00600	S1,006.00	S1,006.00	S1,006.00	s1,006.00	s1,006.00	S1,00600	\$1,006.00	S1,006.00	\$1,006.00	S1,006.00	S1,00600	S1,006.00	S1,006.00	S1,006,00	S1,006.00	\$1,006,00	S1,00,00	51,066,	
Units saces)	365	365	365	365	365	365	365	365	365	365	365	365	365	365	365	365	365	365	${ }_{365}$	365	${ }_{365}$	
Tooil Opeating Coss	5586,190.00	S566,190.00	S566,190.00	S56, 190.0.	5586	\$586,190	5586	5568,1900	S586,190	\$586,190.0.	\$586,19000	\$586, 10000	S566,19000	5586,19000	S586,100.0	S566,19000	s566,19000	S566,19000	s566,19000	S586,19000	\$568,10000	O0 s566.190

Client: WPWMA					
Date: Nov-16-2018					
Worksheet: O\&M Inputs Plan Concept: 2					
PLAN CONCEPT 2					
Raw calculations only, refer to Summary for actual annual allocations					
	83	84	85	${ }^{3108}{ }^{86}$	${ }^{209}{ }^{87}$
Landinloperations					
Tonnage Based Growth Rate \% Adjustment for Operational Change (5\% increase year 27) Other \% Adjustment, if applicable (35% increase in Year 0)					
		$\begin{aligned} & 1.00 \% \\ & 0.00 \% \\ & 0.00 \% \end{aligned}$	0.00\% 0.00%		
osm Unit cost	s8.34	s8.34	S8,34	s8,34	${ }_{58,34}$
	1,182.576.81	1,194,402.58	1.200,364.60	1.218,410	1.230,594,17
Toil Operating Coss					
Pruiceara oparitions					
Tomnage Based Gromit Rate					
(Adjustment for Operational Change (50\% increase starting in year 2) _	${ }_{\text {cose }}^{0.00 \% \%}$	${ }_{\text {cose }}^{0.000 \%}$	${ }_{\text {cose }}^{0.000 \%}$	${ }_{\text {a }}^{0.000 \%}$	${ }_{\substack{0.00 \% \% \\ 0.00 \%}}^{0.0}$
osm Unit ost	${ }_{537,55}$	537.55	${ }^{377.55}$	${ }_{537.55}$	${ }_{537.55}$
Toal Tomage Processed	106,719,74	107,786.94	108,864,81	109.98	111.052.99
Toial Operating Costs					
CxDoperations					
\% Adjustment for Operational Change (50% increase in Year - 2 and Year 0 to account for additional diversion) Other \% Adjustment, if applicable (50% increase in Year -2 and Year 0 for additional C\&D expected)	$\begin{aligned} & 0.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 0.00 \% \\ & 0.00 \% \end{aligned}$	$\begin{aligned} & 0.00 \% \\ & 0.00 \% \end{aligned}$	${ }_{\text {a }}^{0.000 \%}$	${ }^{0.00 \% \%}$
osm Unit cost	524.89	524.89	524.89	524.89	${ }_{524.89}$
Toil Tomage Processed	1,135,188.01	1,14,5,53.89	1,155,005,29	1,169,585	1,188,281,19
Toal Oeparing Cosis					
Composing operations					
Growth Rat Adjustment for Operational Change (30% increase in year 0) Other \% Adjustment, if applicable (none)					
	0.00\%	0.00% 0.00%	$\begin{aligned} & 0.00 \% \\ & 0.00 \% \end{aligned}$		${ }_{\substack{0.00 \% \\ 0.00 \%}}^{0 .}$
osm Unit cost	s34,93	\$34,93	S34.93		534,93
Toal Tonage Processed	293,125.14	298,056.39	29,016:96	302.07.13	30, 2027.20
Toil Opeating Cosss					
mewma oraerition					
Tonnage Based Growth Rat \% Adjustment for Operational Change (increase by 3 staff in 2020, increase by 5 staff in 2027)) Other \% Adjustment, if applicable (none)					
	0.00% 0.00%	0.00\%	0.00% 0.00%		${ }_{0}^{0.00 \% \%}$
osm Unit cost	s9.84	s9.84	s9.84	59.84	
Toaia Tommae inbund	2,252,68397	2.275.210.81	2.297,962.92	2,32,992	2,344,15,97
Toil Operating Coss					
Offilo Disposaland Long Hail					
Tonnage Based Gount Rate	1.00\%	1.00\%	1.0\%\%	1.00\%	1.00\%
osm Unit ost	s83.18	s83.18	S83.18	s83, 18	S83.18
Tolal Tomage isposed	1.04,988, 22	1.015,033.10	1.025,188,48	1,035,40,37	1.04,7,99,77
Toal Operaing Costs					
Postcossure carosm					
Tonnge Based Grown Rate (notused)	1.0\%\%	1.0\%\%	1.00\%	1.00\%	1.00\%
Osm Unit cost (satast in year 67.71 years fom 2018$)$	\$1,006.00	S1,006.00	\$1,006.00	\$1,060.00	\$1,006.00
Units acases)	365	365	365	365	
Toil Operating Cost	5568,190.00	\$566,190.00	\$566,190.00	S568,190.00	S586,19000

Appendix 4C
 Present Value Analysis

Appendix 4C. Present Value Analysis
The present value analysis was completed to provide a way to compare the lifecycle capital and operating costs of the three Plan Concepts. A present value analysis calculates the current (in this case 2018) worth of a future sum of money or stream of cash flows given a specified rate of return. Future cash flows are adjusted per estimated discount rates. The present value analysis provides a level perspective to facilitate comparison of the Plan Concepts, in which varying costs in each Plan Concept are incurred at different points in time. The following sections discuss some of the key components for this present value analysis.

4C. 1 Components of the Analysis

4C.1.1 Period of Analysis

While the present value analysis by design brings all costs after the base year (2018) back to the base year, in this case, the CH2M Team assumed that the capital and operations and maintenance (O\&M) costs for each Plan Concept do not start until 2022 (termed Year 0 of the master plan project). The analysis period was set to start in 2022, as the CH2M Team and WPWMA staff estimated that 2022 was the soonest that the project would be implemented given permitting, engineering, and construction preparation. The period of analysis includes costs from years 2022 (analysis Year 0) through 2109 (analysis Year 87). This period was chosen based on the longest landfill life amongst the three Plan Concepts. Plan Concept 1 is expected to have the longest landfill life at approximately 90 years from 2018. After factoring an additional out year for the start of post-closure, the period of analysis is reflected as 87 years from 2022.

4C.1.2 Discount Rate

A real discount rate of 2 percent was used in the present value analysis (Appendix 4C-1). A real discount rate accounts for the time value of money but does not include the effects of inflation.

A real discount rate was utilized instead of a nominal discount rate; a nominal discount rate includes inflation, unlike the real discount rate. The rationale behind using a real discount rate is that inflation is often difficult to forecast, and changes in inflation rates are typically unlikely to have noticeable effects on the relative costs of alternatives when comparing one alternative to another. Therefore, using a real discount rate results in a simpler model without requiring highly speculative forecasts of inflation in future years.

4C.1.3 Cost Inputs and Timing

The present value analysis includes two main cost inputs: capital costs (both initial capital and replacement capital) and O\&M (or operational) costs. Revenues were not modeled as part of this analysis.

The initial capital outlay and capital replacement cost inputs follow timing and phasing sequences unique to each Plan Concept, as detailed in Sections 2 and 4 of the main report.

The operational cost inputs follow timing and phasing sequences, as detailed in Section 4 of the main report. Most types of operational costs are incurred annually. However, some operational costs, such as those for landfill operations, post-closure care, and offsite disposal and long-haul trucking, have specific start and end dates depending on facility operations.

4C.1.4 Remaining Useful Life/Liability

Remaining useful life refers to the dollar value associated with the remaining life of a constructed element, such as a concrete pad, at the end of the period of analysis. Remaining useful life is factored into the present value analysis as a credit for years outside of the analysis period. Similarly, remaining
liability refers to the liable cost remaining in mandated periods, such as the post-closure care period. The remaining liability is factored into the present value analysis as an additional cost for years outside of the analysis period.

4C. 2 Present Value Analysis Results

The results of the present value analysis are presented in Appendix 4C-2. Table 4C-1 shows the total present values of the three Plan Concepts.

Table 4C-1. Summary of Present Value Costs

Plan Concept	Capital Spending (Present Value)	Operational Costs (Present Value)	Total Project Present Value
0	$\$ 394,300,000$	$\$ 2,697,800,000$	$\$ 3,092,100,000$
1	$\$ 407,300,000$	$\$ 1,710,000,000$	$\$ 2,117,300,000$
2	$\$ 539,900,000$	$\$ 1,957,300,000$	$\$ 2,497,200,000$

Notes:
Values are shown in present value 2018 dollars.

As an additional way to compare the Plan Concepts, the CH2M Team calculated the annualized present value cost for each Plan Concept. The annualized present value represents an annual value when capital expenditures and O\&M costs are normalized into an annual cost that includes all charges. The annualized capital cost can be a useful comparison between how the Plan Concepts look relative to each other given their differences in capital and operating expenditures over the evaluation period; but this value does not represent the actual estimated costs in any given year. The annualized cost represents the value in current dollars (2018), with later years being the discounted annualized cost as appropriate for each year. The annualized present values in 2018 dollars are best for comparison and are presented in Table 4C-2.

Table 4C-2. Summary of Annualized Present Value Costs

Plan Concept	Annualized Capital Spending (Present Value)	Annualized Operational Costs (Present Value)	Annualized Project Present Value
0	$\$ 9,400,000$	$\$ 64,600,000$	$\$ 74,100,000$
1	$\$ 9,800,000$	$\$ 41,000,000$	$\$ 50,700,000$
2	$\$ 12,900,000$	$\$ 46,900,000$	$\$ 59,800,000$

Notes:
Values are shown in present value 2018 dollars.
Values represent the total Plan Concept present value cost spread out on an equal per year basis, discounted and applied from year 2019 through 2109.

4C.2.1 Capital Spending at a Glance

For charts showing capital spending over the analysis period, refer to Appendix 4C-3. These charts present capital spending (including capital replacement costs) in the following formats:

- Annual Capital Spending for Years 0 through 87 (dollars not adjusted for present value)
- All Plan Concepts
- Plan Concept 0
- Plan Concept 1
- Plan Concept 2
- Annual Capital Spending for Years 0 through 10 (dollars not adjusted for present value)
- All Plan Concepts
- Plan Concept 0
- Plan Concept 1
- Plan Concept 2

Note that the charts in Appendix 4C-3 depict total initial capital and have not been adjusted to reflect present values.

4C.2.2 Cumulative Spending at a Glance

Cumulative capital spending, operational spending, and total project spending over the analysis period is presented on charts in Appendix 4C-4. The charts present cumulative spending in the following formats:

- Cumulative Total Spending for All Plan Concepts (dollars reflect present value)
- Years 0 through 87
- Years 0 through 20
- Cumulative Capital Spending for All Plan Concepts (dollars reflect present value)
- Years 0 through 87
- Years 0 through 20
- Cumulative Operational Spending for All Plan Concepts (dollars reflect present value)
- Years 0 through 87
- Years 0 through 20

Note that the real discount rate was applied to values in Appendix 4C-4; thus, these values reflect present value 2018 dollars (consistent with Tables 4C-1 and 4C-2).

Appendix 4C-1
Discount Rate Documentation

From:
Pitzler, Dan/SEA
Sent: Friday, October 19, 2018 11:52 AM
To:
Subject:

McRae, Jennifer/SJC; Goodrich, Janet/SAC
Discount Rate

Didn't find too much current stuff from local cities. Here's another approach. Current benchmark 30-year bond yield is 3.45\%, see https://www.bloomberg.com/quote/BVMB30Y:IND

CBOs Budget and Economic Outlook: 2018 to 2028 at https://www.cbo.gov/system/files?file=115th-congress-2017-2018/reports/53651-outlook.pdf CPI inflation ranges from 2.0% to 2.5% over then next 10 years.

Thus, the real discount rate could be as low as 1-1.5\%. That is quite low historically (excluding the past 5-10 years).

On the basis of this information, I recommend a 2% real discount rate.

Dan

Daniel R. Pitzler
Jacobs
Principal Economist, Decision Science Practice Lead
425.233.3592
425.241.1837 mobile
dan.pitzler@jacobs.com
1100 112 ${ }^{\text {th }}$ Ave. N.E.
Bellevue, WA.
USA
www.jacobs.com

Appendix 4C-2
Present Value Analysis Results

Client: WPWMA
Project: Renewable Placer - Waste Action Plan
Date: Nov-16-2018

Summary of Concept Costs, Present Value, 2018 Dollars (Rounded)						
Plan Concept	Capital Spending	O\&M Costs	Total Project Present Value	Annualized Capital Spending	Annualized O\&M Costs	Annualized Project Present Value
		(PV)	(PV)	(PV)	(PV)	(PV)

Numbers shown are the present value of costs.

Client: WPWMA
Project: Renewable Placer - Waste Action Plan
Date: Nov-16-2018
Parameter Variable Name Value Units Notes
Real Discount Rate \quad RDR $2 \% \quad$ Per Jacobs Economist (Dan Pitzler) email, 10/19/2018: Recommends using 2\%

	997437866
And	为
	${ }_{\text {c }}$

[^12]

仡	
Ale	ctions
为	cose

Ammalit	${ }^{5}$
Nomed	
	${ }_{\text {cose }}^{\substack{\text { S }}}$

Canious	
	s
Aenualea Oeperaing and Manienenace Seend	${ }^{\text {s }}$
Ander	

[^13]\qquad

		${ }_{\substack{2038 \\ 71}}$	${ }_{172}^{2094}$	${ }_{\substack{2095}}$	${ }_{\substack{2096 \\ 74}}$	${ }_{75}^{2097}$	${ }_{\substack{2098 \\ 78}}$	${ }^{2089}$	${ }_{\substack{2100 \\ 78}}^{2}$	${ }_{29}^{2109}$	$\underbrace{2}_{\substack{2102 \\ 80}}$	${ }_{\substack{2103 \\ 88}}^{2}$	${ }_{\substack{2104 \\ 82 \\ \hline 8}}$	${ }^{2105}$	$\underbrace{\substack{\text { che }}}_{\substack{2106 \\ 84}}$	${ }_{\substack{2107 \\ 85}}$	${ }_{\substack{2108 \\ 86}}$	$\underbrace{200}_{\substack{209 \\ 87}}$	Remanin
		${ }^{730,832}$	738.140	${ }^{74,5,51}$	${ }^{72,977}$	${ }^{760.006}$	${ }^{76,111}$	${ }^{775,793}$	${ }^{78,50}$	${ }^{791.366}$	${ }^{79,300}$	${ }^{807,293}$	${ }^{815,366}$	${ }^{823,519}$	${ }^{831,755}$	${ }^{80,072}$	${ }^{884,473}$	${ }^{856,958}$	
Caprial costs																			
Critual Element																			
Per																			
Putiole	(tasind										: s			: s ${ }_{\text {s }}$			$\therefore{ }_{\text {¢ }}^{5}$		
							1,799,189 ${ }^{\text {s }}$							3,400,008 ${ }_{\text {s }}^{\text {s }}$	${ }_{5}$		$342244{ }^{\text {s }}$		(7,95,291)
		s			s	${ }_{\text {s }}^{5}$		s	${ }_{5}^{5}$	${ }_{5}^{5}$: ${ }_{\text {s }}^{5}$	${ }_{5}$: ${ }_{5}^{5}$	${ }^{5}$: ss	: ${ }_{5}^{5}$	s	
		7,636,512 s	s	$\stackrel{5}{5}$	s	s		s	s	${ }_{5}$	s	11,073,157 s	s	- s	s	- s	- ${ }_{\text {s }}$		(6, 108,005)
Comel	(tal		s		${ }_{5}^{5}$		${ }_{\text {s }}^{5}$	${ }_{5}^{5}$	${ }_{5}^{5}$	s		${ }_{5}^{5}$: ${ }_{5}^{5}$	${ }_{5}^{5}$	s	${ }_{5}^{5}$	${ }_{5}^{5}$	
Comel	(ex													- ${ }_{\text {s }}^{5}$	5	${ }_{5}^{5}$	${ }_{8}^{8}$	S	
(e)	(eater						- ${ }^{5}$	- s	- s	- ${ }^{5}$	- s		${ }_{5}$	- ${ }^{5}$	s	${ }_{5}$	s	- ${ }^{5}$	
(emememe	(ex					-s	- 5	- s	- s	${ }_{5}$	- ${ }^{5}$.	${ }^{5}$	- ${ }^{5}$	${ }_{5}$	s	${ }^{5}$	${ }_{5}^{5}$	
	cticle		${ }_{5}^{5}$				- ${ }^{5}$	- s	- s	s	- ${ }^{5}$			- ${ }^{5}$		$\therefore{ }^{-}$			
Compes. Miseclaneous Euioment	s ${ }_{\text {s }}^{\text {s }}$	$4.728,680$ s	${ }_{5}^{5}$	${ }_{5}^{5}$	${ }_{\text {s }}$	546,90 ${ }^{\text {s }}$	s	: s	: s	- s	${ }_{546,90}$ s ${ }_{\text {s }}^{\text {s }}$	20,66,970 s	: s	: s		7,971,67 s	- s	$\bigcirc{ }^{-}$	(25,287, 173)
coman	s 80,764.594										21,413,261 ${ }^{\text {s }}$						-		
						${ }_{\text {s }}^{5}$					-	${ }_{8.809 .463}^{\text {a }} \stackrel{\text { s }}{\text { s }}$		¢	s	$\vdots{ }^{\text {¢ }}$	${ }_{8.809 .463} \stackrel{\text { c }}{\text { s }}$	¢	
Admin Staff Bldg	${ }_{\text {s }}^{\text {s }}$		s			s	${ }_{5}^{5}$	$\therefore{ }_{\text {s }}^{\text {s }}$			${ }_{5}$: s ${ }_{\text {s }}$: ${ }_{5}^{5}$: s	: ${ }_{5}^{5}$		
	¢		${ }^{5}$		${ }_{5}$	${ }_{5}$		172.583 s	${ }_{5}$	${ }_{5}$		- s	${ }_{5}$	- s	${ }_{5}$	- s	$\because s$		(4,773,881)
	${ }_{\text {coser }}^{5}$	$\therefore{ }_{5}^{5}$	s	: ${ }_{5}^{5}$: ${ }_{5}^{5}$	-	: ${ }_{5}^{5}$: ${ }_{5}^{5}$: ${ }_{5}^{5}$: ${ }_{5}^{5}$	$\therefore{ }^{5}$: s ${ }_{\text {s }}$	${ }_{5}^{5}$: ${ }_{5}^{5}$: s	: ${ }_{\text {s }}$: ${ }_{8}^{8}$: s	
Wesemen Euamanere						57.274													17,08
Westementrane. Roadmys			: s	: s ${ }_{\text {s }}$: ${ }_{5}^{5}$: s ${ }_{\text {s }}$: s ${ }_{\text {s }}$		$\therefore{ }_{5}^{5}$: s	: s	: sf	: s	: ss	: s		: ${ }_{8}^{8}$	${ }_{\text {s }}^{5}$	
Overapsesicment Costs		55,27																	(2,719,502)
Overas	${ }^{8.0774344}$	${ }_{5}^{5}$	${ }_{5}^{5}$	${ }_{5}^{5}$: ${ }_{5}^{5}$: ${ }_{5}^{5}$: s	: s	213.822 s	: s	: ss	: ss	: ss	: ss	: s	- s	: s	${ }_{\text {s }}^{5}$	(136.866)
	citios.08	s	s	${ }_{s}$	s	- s	- s	: s	: s	- s	- s	- ss	- s	- s	${ }_{5}^{5}$	- s	1557i ${ }^{\text {s }}$	${ }_{5}^{5}$	(3,429,46)
		: s	${ }_{s}^{5}$: ${ }_{\text {s }}$: s	: s	${ }_{5}^{5}$: s	: s	: s	: s	: ss	: s	: ss	${ }_{\text {s }}$: s	: s	: s	(470.56)
			${ }_{5}^{5}$		${ }_{5}^{5}$	${ }_{5}^{5}$	${ }_{\text {s }}^{5}$	${ }_{5}^{5}$	${ }_{\text {s }}$	${ }_{\text {s }}^{5}$	${ }_{\text {s }}$: ${ }_{\text {s }}$	${ }_{s}^{8}$: ss	${ }_{8}^{5}$: s	$\therefore{ }_{8}^{5}$	${ }_{5}^{5}$	
Stormotarerenond Costis	${ }^{5}$ 2,682073														-	- s			(1,482,802)
	¢s ${ }_{s}^{\text {s }}$: ss	: ${ }_{\text {s }}$			s	: s					: ss	: s		: ${ }_{\text {s }}$				(225.98)
		: s	: s	${ }_{5}^{5}$		${ }_{5}^{5}$	${ }_{5}^{5}$	${ }_{5}^{5}$	${ }_{5}^{5}$	${ }_{5}^{5}$: s ${ }^{\text {s }}$: ${ }_{\text {s }}$	${ }_{s}^{5}$: s	${ }_{5}^{5}$: s	: s	: s	(623 33)
Ceneratif commosis Poond Removal																			
	${ }_{5}^{5} \quad 6.079$: s	: ${ }_{5}^{5}$	s	s	s	s	: s ${ }^{\text {s }}$	s	s	: s	${ }_{5}^{5}$: s		: s	${ }^{415,766}$	${ }_{5}^{5}$	${ }^{134,97}$
Subtoal	S 4007269,413	21,232,109 s	s	s	s	600,214 s	${ }_{6,487,506}$	${ }_{172,583}$ s	$21,322 \mathrm{~s}$	s	22,72,989 s	49,35,974 s	s	3,409088	s	8,649,76 s	9,723,19 s	s	(55,068,997)
operation ano mantenance costs																			
							coseme			cincine				(ty2.325					
	¢					29.459.922 ${ }^{\text {a }}$												(10.654.10	
Long hail rucking yoar 8 87	[ill																		14,950,25
Subtoal	\$ 5.7170 .077 .034	67,50,446s	68,185,50 s	68.887 700 s	$69.56,080$ s	70,25,641 s	70.954,157 s	71,66,699 s	${ }^{72,380,336}$ s	$73,104,139 \mathrm{~s}$	$73.83,180 \mathrm{~s}$	74,573,532 s	75,392027 s	76.072,40 s	${ }_{7,8,83,185}$	77,00,517 s	78,37,532 s	156.884 .028 s	14,950,254

	97,54.514
And	为
	边

[^14]

ANNUALNEI Cost

$\frac{1}{3}$

Sels	
	${ }_{\text {sim }}^{\text {s }}$

AMNUAL NEI Cost

Sels	
	${ }_{\text {sim }}^{\text {s }}$

Appendix 4C-3
Capital Spending Charts

All Plan Concepts: Annual Capital Spending for Years 0-87 (dollars not adjusted for Present Value)

Plan Concept 0: Annual Capital Spending for Years 0-87 (dollars not adjusted for Present Value)

Plan Concept 1: Annual Capital Spending for Years 0-87 (dollars not adjusted for Present Value)

Plan Concept 2: Annual Capital Spending for Years 0-87
dollars not adjusted for Present Value

All Plan Concepts: Annual Capital Spending for Years 0-10 (dollars not adjusted for Present Value)

Plan Concept 1: Annual Capital Spending for Years 0-10 (dollars not adjusted for Present Value)

Plan Concept 2: Annual Capital Spending for Years 0-10
(dollars not adjusted for Present Value)

Appendix 4C-4
Cumulative Spending Charts

Cumulative Total Spending Present Value over Time (Year 0-87)

Cumulative Capital Spending Present Value over Time (Year 0-87)

Cumulative O\&M Costs
 Present Value over Time (Year 0-87)

Cumulative Total Spending
 Present Value over Time (Year 0-20)

Cumulative Capital Spending

Present Value over Time (Year 0-20)

Cumulative O\&M Costs
Present Value over Time (Year 0-20)

[^0]: ${ }^{1}$ As the project progresses, the actual capacity of the C\&D Area may be further evaluated as noted in Table 4A-2. WPWMA may increase the flow of C\&D materials through the C\&D Area and additional capacity considerations will need to be evaluated at that time.

[^1]: ${ }^{2}$ As the project progresses, design details (for example, widths of receiving piles, pavement type, and operational practices) may be further evaluated as noted in Table 4A-2.
 ${ }^{3}$ As the project progresses, stormwater pond design details may be subject to additional requirements as noted in Table 4A-2.

[^2]: ${ }^{4}$ Golder Associates Inc. 2018. Pre-Subtitle D Area Waste Relocation Workplan. Draft. September. See Appendix 4A-1.
 ${ }^{5}$ Based on actual phasing of the unlined waste area excavation with respect to landfill construction in Plan Concept 1, there may be additional considerations and costs associated with the excavation as noted in Table 4A-2.
 ${ }^{6}$ As the project progresses, the number of scales may differ as noted in Table 4A-2.

[^3]: ${ }^{7}$ As the project progresses, the need for a western entrance and/or alternate traffic routes may be further evaluated as noted in Table 4A-2.

[^4]: ${ }^{8}$ As the project progresses, the maintenance facility's sizing and components may be further evaluated as noted in Table 4A-2.
 ${ }^{9}$ As the project progresses, stormwater pond design details may be subject to additional requirements as noted in Table 4A-2.

[^5]: ${ }^{10}$ As the project progresses, the HHW facility's sizing and components may be further evaluated as noted in Table 4A-2.

[^6]: ${ }^{11}$ Placer County Community Development Resource Agency. 2018. Sunset Area Plan. Preliminary Public Review Draft. January.
 ${ }^{12}$ County of Placer. 2018. Placer Ranch Specific Plan Development Standards Design Guidelines. Preliminary Public Review Draft. January 24.

[^7]: ${ }^{13}$ As the project progresses, the extent of site utility work may be further evaluated as noted in Table 4A-2.

[^8]: Note - Where conversion from cubic yards to tons was necessary (e.g. for determining "Total Accepted Tons"), the following conversion factors were used: MSW yards/8=MSW Tons; C\&D Yards/6=C\&D Tons; Green Waste Yards/8=Green Waste Tons; Wood Waste Yards/6 $=$ Wood Waste Tons; Inert Yards/ $/ 2=$ Inert Tons.

[^9]: NOTICE - This communication may contain confidential and privileged information that is for the sole use of the intended recipient. Any viewing, copying or distribution of, or reliance on this message by unintended recipients is strictly prohibited. If you have received this message in error, please notify us immediately by replying to the message and deleting it from your computer.

[^10]: Notes:

 1. Refuse removal production rate based on 4 CAT 375 and 8 CAT 740 , 7 loads/hr/truck, $10 \mathrm{hr} /$ day, and 25 cy/load
 2. Total volume for refuse removal $=3,646,000$ cy (total volume) $-425,016$ cy (final cover volume).
 3. 10 percent time added to account for refuse removal delays.
 4. Includes excavate waste placement in lined disposal module.
[^11]: Notes:

 1. Volume of soil removed consists of waste footprint $x 2 \mathrm{ft}$ subgrade excavation plus an average of 2 ft of over-excavation.
 2. Soil removal production rate based on 4 CAT 637D scrapers, 8 loads/hr/scraper, $10 \mathrm{hr} / \mathrm{day}$, and $30 \mathrm{cy} / \mathrm{load}$
[^12]:

[^13]:

[^14]:
 \qquad

